Active Supervised Domain Adaptation

  • Avishek Saha
  • Piyush Rai
  • Hal DauméIII
  • Suresh Venkatasubramanian
  • Scott L. DuVall
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6913)


In this paper, we harness the synergy between two important learning paradigms, namely, active learning and domain adaptation. We show how active learning in a target domain can leverage information from a different but related source domain. Our proposed framework, Active Learning Domain Adapted (Alda), uses source domain knowledge to transfer information that facilitates active learning in the target domain. We propose two variants of Alda: a batch B-Alda and an online O-Alda. Empirical comparisons with numerous baselines on real-world datasets establish the efficacy of the proposed methods.


active learning domain adaptation batch online 


  1. 1.
    Ben-David, S., Blitzer, J., Crammer, K., Pereira, F.: Analysis of representations for domain adaptation. In: NIPS 2006, Vancouver, Canada (December 2006)Google Scholar
  2. 2.
    Blitzer, J., Mcdonald, R., Pereira, F.: Domain adaptation with structural correspondence learning. In: EMNLP 2006, Sydney, Australia (July 2006)Google Scholar
  3. 3.
    Cesa-Bianchi, N., Gentile, C., Zaniboni, L.: Worst-case analysis of selective sampling for linear classification. JMLR 7 (2006)Google Scholar
  4. 4.
    Chan, Y.S., Ng, H.T.: Domain adaptation with active learning for word sense disambiguation. In: ACL 2007, Prague, Czech Republic (June 2007)Google Scholar
  5. 5.
    Dasgupta, S., Kalai, A.T., Monteleoni, C.: Analysis of perceptron-based active learning. JMLR 10 (2009)Google Scholar
  6. 6.
    Daumé III, H.: Frustratingly easy domain adaptation. In: ACL 2007, Prague, Czech Republic (June 2007)Google Scholar
  7. 7.
    Druck, G., Settles, B., McCallum, A.: Active learning by labeling features. In: EMNLP 2009, Singapore (August 2009)Google Scholar
  8. 8.
    Huang, J., Smola, A.J., Gretton, A., Borgwardt, K.M., Schölkopf, B.: Correcting sample selection bias by unlabeled data. In: NIPS 2007, Vancouver, Canada (2007)Google Scholar
  9. 9.
    Jiang, J.: A literature survey on domain adaptation of statistical classifiers (2008)Google Scholar
  10. 10.
    Monteleoni, C., Kääriäinen, M.: Practical online active learning for classification. In: IEEE CVPR Workshop on Online Learning for Classification, Minneapolis, USA (June 2007)Google Scholar
  11. 11.
    Raghavan, H., Madani, O., Jones, R.: Active learning with feedback on features and instances. JMLR 7 (December 2006)Google Scholar
  12. 12.
    Settles, B.: Active learning literature survey. Computer Sciences Technical Report 1648, University of Wisconsin-Madison (2009)Google Scholar
  13. 13.
    Shi, X., Fan, W., Ren, J.: Actively transfer domain knowledge. In: Daelemans, W., Goethals, B., Morik, K. (eds.) ECML PKDD 2008, Part II. LNCS (LNAI), vol. 5212, pp. 342–357. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  14. 14.
    Sugiyama, M., Nakajima, S., Kashima, H., von Bünau, P., Kawanabe, M.: Direct importance estimation with model selection and its application to covariate shift adaptation. In: NIPS 2007, Vancouver, Canada (December 2007)Google Scholar
  15. 15.
    Tumer, K., Ghosh, J.: Estimating the bayes error rate through classifier combining. In: ICPR 1996, Vienna, Austria, vol. 2 (August 1996)Google Scholar
  16. 16.
    Xue, Y., Liao, X., Carin, L., Krishnapuram, B.: Multi-task learning for classification with dirichlet process priors. JMLR 8 (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Avishek Saha
    • 1
  • Piyush Rai
    • 1
  • Hal DauméIII
    • 2
  • Suresh Venkatasubramanian
    • 1
  • Scott L. DuVall
    • 3
  1. 1.School of ComputingUniversity of UtahUSA
  2. 2.Department of Computer ScienceUniversity of Maryland CPUSA
  3. 3.VA SLC Healthcare SystemUniversity of UtahUSA

Personalised recommendations