MIME: A Framework for Interactive Visual Pattern Mining

  • Bart Goethals
  • Sandy Moens
  • Jilles Vreeken
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6913)


We present a framework for interactive visual pattern mining. Our system enables the user to browse through the data and patterns easily and intuitively, using a toolbox consisting of interestingness measures, mining algorithms and post-processing algorithms to assist in identifying interesting patterns. By mining interactively, we enable the user to combine their subjective interestingness measure and background knowledge with a wide variety of objective measures to easily and quickly mine the most important and interesting patterns. Basically, we enable the user to become an essential part of the mining algorithm. Our demo currently applies to mining interesting itemsets and association rules, and its extension to episodes and decision trees is ongoing research.


MIME Pattern Exploration Interactive Visual Mining 


  1. 1.
    Ankerst, M., Ester, M., Kriegel, H.-P.: Towards an effective cooperation of the user and the computer for classification. In: Proc. ACM SIGKDD, pp. 179–188 (2000)Google Scholar
  2. 2.
    Bertini, E., Lalanne, D.: Investigating and reflecting on the integration of automatic data analysis and visualization in knowledge discovery. SIGKDD Explor. Newsl. 11, 9–18 (2010)CrossRefGoogle Scholar
  3. 3.
    Blockeel, H., Calders, T., Fromont, E., Goethals, B., Prado, A., Robardet, C.: An inductive database prototype based on virtual mining views. In: Proc. ACM SIGKDD, pp. 1061–1064 (2008)Google Scholar
  4. 4.
    Leung, C.K.-S., Carmichael, C.L.: FpVAT: a visual analytic tool for supporting frequent pattern mining. SIGKDD Explor. Newsl. 11, 39–48 (2010)CrossRefGoogle Scholar
  5. 5.
    Techapichetvanich, K., Datta, A.: VisAR: a new technique for visualizing mined association rules. In: Li, X., Wang, S., Dong, Z. (eds.) Adv. Data Min. Appl., pp. 728–728. Springer, Berlin (2005)Google Scholar
  6. 6.
    Geng, L., Hamilton, H.J.: Interestingness measures for data mining: A survey. ACM Comput. Surv. 38 (September 2006)Google Scholar
  7. 7.
    Goethals, B.: Frequent set mining. In: Data Mining and Knowledge Discovery Handbook, pp. 321–338 (2010)Google Scholar
  8. 8.
    Vreeken, J., Tatti, N., Goethals, B.: Useful patterns (UP’10) ACM SIGKDD workshop report. SIGKDD Explor. Newsl. 12, 56–58 (2011)CrossRefGoogle Scholar
  9. 9.
    Keim, D.A.: Information visualization and visual data mining. IEEE Trans. Vis. Comp. Graph. 8, 1–8 (2002)CrossRefGoogle Scholar
  10. 10.
    Tan, P.-N., Kumar, V., Srivastava, J.: Selecting the right interestingness measure for association patterns. In: Proc. ACM SIGKDD, pp. 32–41 (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Bart Goethals
    • 1
  • Sandy Moens
    • 1
  • Jilles Vreeken
    • 1
  1. 1.University of AntwerpBelgium

Personalised recommendations