Advertisement

Multi-label Ensemble Learning

  • Chuan Shi
  • Xiangnan Kong
  • Philip S. Yu
  • Bai Wang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6913)

Abstract

Multi-label learning aims at predicting potentially multiple labels for a given instance. Conventional multi-label learning approaches focus on exploiting the label correlations to improve the accuracy of the learner by building an individual multi-label learner or a combined learner based upon a group of single-label learners. However, the generalization ability of such individual learner can be weak. It is well known that ensemble learning can effectively improve the generalization ability of learning systems by constructing multiple base learners and the performance of an ensemble is related to the both accuracy and diversity of base learners. In this paper, we study the problem of multi-label ensemble learning. Specifically, we aim at improving the generalization ability of multi-label learning systems by constructing a group of multi-label base learners which are both accurate and diverse. We propose a novel solution, called EnML, to effectively augment the accuracy as well as the diversity of multi-label base learners. In detail, we design two objective functions to evaluate the accuracy and diversity of multi-label base learners, respectively, and EnML simultaneously optimizes these two objectives with an evolutionary multi-objective optimization method. Experiments on real-world multi-label learning tasks validate the effectiveness of our approach against other well-established methods.

Keywords

Multi-label learning ensemble learning multi-objective optimization negative correlation learning 

References

  1. 1.
    Baker, J.: Adaptive Selection Methods for Genetic Algorithms. In ICGA, pp. 100–111 (1985)Google Scholar
  2. 2.
    Breiman, L.: Bagging Predictors. Machine Learning 24(2), 123–140 (1996)zbMATHGoogle Scholar
  3. 3.
    Chen, H., Yao, X.: Multiobjective Neural Network Ensembles Based on Regularized Negative Correlation Learning. Transactions on Knowledge and Data Engineering 22(12), 1738–1751 (2010)CrossRefGoogle Scholar
  4. 4.
    Deb, K.: Multiobjective Optimization using Evolutionary Algorithms. Wiley, UK (2001)zbMATHGoogle Scholar
  5. 5.
    Dembczynski, K., Cheng, W., Hullermeier, E.: Bayes Optimal Multilabel Classification via Probabilistic Classifier Chains. In: ICML, pp. 279–286 (2010)Google Scholar
  6. 6.
    Elisseeff, A., Weston, J.: A Kernel Method for Multilabelled Classification. In: NIPS, pp. 681–687 (2002)Google Scholar
  7. 7.
    Goldberg, D.E.: Generic Algorithms in Search Optimization and Machine Learning, USA, Boston (1989)Google Scholar
  8. 8.
    Gretton, A., Bousquet, O., Smola, A., Scholkopf, B.: Measuring Statistical Dependence with Hilbert-Schmidt Norms. In: Jain, S., Simon, H.U., Tomita, E. (eds.) ALT 2005. LNCS (LNAI), vol. 3734, pp. 63–77. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  9. 9.
    Goldberg, D., Deb, K., Kargupta, H., Harik, G.: Rapid, Accurate Optimization of Difficult Problems using Fast Messy Genetic Algorithms. In: ICGA, pp. 56–64 (1993)Google Scholar
  10. 10.
    Krogh, A., Vedelsby, J.: Neural Network Ensembles, Cross Validation, and Active Learning. In: NIPS, pp. 231–238 (1995)Google Scholar
  11. 11.
    Liu, Y., Yao, X.: Ensemble Learning via Negative Correlation. Neural Networks 12(10), 1399–1404 (1999)CrossRefGoogle Scholar
  12. 12.
    Liu, Y., Yao, X.: Simultaneous Training of Negatively Correlated Neural Networks in an Ensemble. Transaction on Systems, Man, and Cybernetics, Part B: Cybernetics 29(6), 716–725 (1999)CrossRefGoogle Scholar
  13. 13.
    Petterson, J., Caetano, T.: Reverse Multi-label Learning. In: NIPS (2010)Google Scholar
  14. 14.
    Read, J., Pfahringer, B., Holmes, G.: Multi-label Classification using Ensembles of Pruned Sets. In: ICDM, pp. 995–1000 (2008)Google Scholar
  15. 15.
    Read, J., Pfahringer, B., Holmes, G., Frank, E.: Classifier Chains for Multi-label Classification. In: ECML, pp. 254-269 (2009)Google Scholar
  16. 16.
    Tsoumakas, G., Katakis, I., Vlahavas, I. P.: Effective and Efficient Multilabel Classification in Domains with Large Number of Labels. In: ECML/PKDD Workshop (2008)Google Scholar
  17. 17.
    Tsoumakas, G., Vlahavas, I.P.: Random k-Labelsets: an Ensemble Method for Multilabel Classification. In: Kok, J.N., Koronacki, J., Lopez de Mantaras, R., Matwin, S., Mladenič, D., Skowron, A. (eds.) ECML 2007. LNCS (LNAI), vol. 4701, pp. 406–417. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  18. 18.
    Veldhuizen, D.A.V., Lamont, G.B.: Multiobjective Evolutionary Algorithms: Analyzing the state-of-the-art. Evolutionary Computation 18(2), 125–147 (2000)CrossRefGoogle Scholar
  19. 19.
    Vens, C., Struyf, J., Schietgat, L., Dzeroski, S., Blockeel, H.: Decision Tree for Hierarchical Multi-label Classification. Machine Learning 2(73), 185–214 (2008)CrossRefGoogle Scholar
  20. 20.
    Yang, B.S., Sun, J.T., Wang, T.J., Chen Z.: Effective Multi-label Active Learning for Text Classification. In: KDD, pp. 917–925 (2009)Google Scholar
  21. 21.
    Zhang, M.L.: ML-RBF: RBF Neural Networks for Multi-label Learning. Neural Process Letters 29(2), 61–74 (2009)CrossRefMathSciNetGoogle Scholar
  22. 22.
    Zhang, X., Yuan, Q., Zhao, S., Fan, W., Zheng, W., Wang, Z.: Multi-label Classification without the Multilabel Cost. In: SDM, pp. 778–789 (2010)Google Scholar
  23. 23.
    Zhang, M.L., Zhou, Z.H.: Multilabel Neural Networks with Applications to Functional Genomics and Text Categorization. Transactions on Knowledge and Data Engineering 18(10), 1338–1351 (2006)CrossRefGoogle Scholar
  24. 24.
    Zhang, M.L., Zhou, Z.H.: Ml-knn: a Lazy Learning Approach to Multi-label Learning. Pattern Recognition 40(7), 2038–2048 (2007)CrossRefzbMATHGoogle Scholar
  25. 25.
    Zhang, M.L., Zhang, K.: Multi-label Learning by Exploiting Label Dependency. In: KDD, pp. 999–1007 (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Chuan Shi
    • 1
  • Xiangnan Kong
    • 2
  • Philip S. Yu
    • 2
  • Bai Wang
    • 1
  1. 1.School of ComputerBeijing University of Posts and TelecommunicationsBeijingChina
  2. 2.Department of Computer ScienceUniversity of IllinoisChicagoUSA

Personalised recommendations