Skip to main content

Bacterial Decolorization and Degradation of Azo Dyes

  • Chapter
  • First Online:
Microbial Degradation of Xenobiotics

Part of the book series: Environmental Science and Engineering ((ESE))

Abstract

Color has always been a part of human life since long. All colorants, until the middle of nineteenth century, were of natural origin. Manufacturing of synthetic dyes started in 1856 and the first compound to be synthesized was aniline purple. By the beginning of the twenteeth century, synthetic dyes almost completely replaced natural compounds. Synthetic dyes represent an important class of industrial chemicals, which are used extensively in textile, leather tanning, paper production, food technology, agriculture, light harvesting array, coloring and pharmaceuticals

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adedayo O, Javadpour S, Taylor C, Anderson WA, Moo-Young M (2004) Decolourization and detoxification of methyl red by aerobic bacteria from a wastewater treatment plant. World J Microbiol Biotechnol 20:545–550

    CAS  Google Scholar 

  • Alaton IA, Balcioglu IA, Bahnemann DW (2002) Advanced oxidation of a reactive dyebath effluent: comparision of O3, H2O2/UV-C and TiO2/UV - A process. Water Res 36:1143–1154

    CAS  Google Scholar 

  • Albuquerque MGE, Lopes AT, Serralheiro ML, Novais JM, Pinheiro HM (2005) Biological sulphate reduction and redox mediator effects on azo dye decolourisation in anaerobic-aerobic sequencing batch reactors. Enzyme Microb Technol 36:790–799

    CAS  Google Scholar 

  • Alexander M, Lustigham BK (1996) Effect of chemical structure on microbial degradationn of substituted benzenes. J Agric Food Chem 14:410–413

    Google Scholar 

  • Al-Kdasi A, Idris A, Saed K, Guan CT (2004) Treatment of textile wastewater by advanced oxidation processes—a review. Global Nest Intl J 6:221–229

    Google Scholar 

  • Alvarez LH, Perez-Cruz MA, Rangel-Mendez JR, Cervantes FJ (2010) Immobilized redox mediator on metal-oxides nanoparticles and its catalytic effect in a reductive decolorization process. J Hazard Mater 184:268–272

    CAS  Google Scholar 

  • Amoozegar MA, Hajighasemi M, Hamedi J, Asad S, Ventosa A (2010) Azo dye decolorization by halophilic and halotolerant microorganisms. Ann Microbiol. doi: 10.1007/s13213-010-0144-y

  • Ayed L, Khelifi E, Jannet HB, Miladi H, Cheref A, Achour S, Bakhrouf A (2010) Response surface methodology for decolorization of azo dye methyl orange by bacterial consortium: produced enzymes and metabolites characterization. Chem Eng J 165:200–208

    CAS  Google Scholar 

  • Bafana A, Chakrabarti T (2008) Lateral gene transfer in phylogeny of azoreductase enzyme. Comput Biol Chem 32:191–197

    CAS  Google Scholar 

  • Bafana A, Devi SS, Krishnamurthi K, Chakrabarti T (2007) Kinetics of decolourisation and biotransformation of direct black 38 by C. hominis and P. stutzeri. App Microbiol Biotechnol 74:1145–1152

    CAS  Google Scholar 

  • Banat IM, Nigam P, Singh D, Merchant R (1996) Microbiol degradation of textile—dye containing effluents: a review. Biores Technol 58:217–227

    CAS  Google Scholar 

  • Barragan BE, Costa C, Carmen Marquez C (2007) Biodegradation of azo dyes by bacteria inoculated on solid media. Dyes Pigment 75:73–81

    CAS  Google Scholar 

  • Barsing P, Tiwari A, Joshi T, Garg S (2011) Application of a novel bacterial consortium for mineralization of sulphonated aromatic amines. Biores Technol 102:765–771

    CAS  Google Scholar 

  • Bayley RC, Barbour MG (1984) Degradation of aromatic compounds by the meta and gentisate pathways: Biochemistry and regulation. In: Gibson DT (ed) Microbial degradation of organic compounds. Marcel Dekker, New York, pp 253–294

    Google Scholar 

  • Behnajaday MA, Modirshahla N, Shokri M (2004) Photodestruction of Acid Orange 7 (AO7) in aqueous solutions by UV/H2O2: influence of operational parameters. Chemosphere 55:129–134

    Google Scholar 

  • Bin Y, Jiti Z, Jing W, Cuihong D, Hongman H, Zhiyong S, Yongming B (2004) Expression and characteristics of the gene encoding azoreductase from Rhodobacter sphaeroides AS1.1737. FEMS Microbiol Lett 236:129–136

    Google Scholar 

  • Blumel S, Stolz A (2003) Cloning and characterization of the gene coding for the aerobic azoreductase from Pigmentiphaga kullae K24. Appl Microbiol Biotechnol 62(2–3):186–190

    CAS  Google Scholar 

  • Blumel S, Knackmuss HJ, Stolz A (2002) Molecular cloning and characterization of the gene coding for the aerobic azoreductase from Xenophilus azovorans KF46F. Appl Environ Microbiol 68(8):3948–3955

    CAS  Google Scholar 

  • Bragger JL, Lloyd AW, Soozandehfar SH, Bloom.field SF, Marriott C, Martin GP (1997) Investigations into the azo reducing activity of a common colonic microorganism. Intl J Pharm 157:61–71

    CAS  Google Scholar 

  • Bras R, Ferra MIA, Pinheiro HM, Goncalves IC (2001) Batch tests for assessing decolourisation of azo dyes by methanogenic and mixed cultures. J Biotechnol 89:155–162

    CAS  Google Scholar 

  • Bromley-Challenor KCA, Knapp JS, Zhang Z, Gray NCC, Hetheridge MJ, Evans MR (2000) Decolorization of an azo dye by unacclimated activated sludge under anaerobic conditions. Water Res 34:4410–4418

    CAS  Google Scholar 

  • Brown D, Hamburger B (1987) The degradation of dyestu.s: part III–investigations of their ultimate degradability. Chemosphere 16:1539–1553

    CAS  Google Scholar 

  • Carliell CM, Barclay SJ, Naidoo N, Buckley CA, Mulholland DA, Senior E (1994) Anaerobic decolorisation of reactive dyes in conventional sewage treatment processes. Water SA 20:341–344

    CAS  Google Scholar 

  • Carliell CM, Barclay N, Buckley CA (1996) Treatment of exhausted reactive dye bath effluent using anaerobic digestion laboratory and full-scale trials. Water SA 22:225–233

    CAS  Google Scholar 

  • Carvalho MC, Pereira C, Gonc-alves IC, Pinheiro HM, Santosa AR, Lopesa, Ferra MI (2008) Assessment of the biodegradability of a monosulfonate azo dye and aromatic amines. Intl Biodeter Biodegrad 62:96–103

    CAS  Google Scholar 

  • Cervantes FJ (2002) Quinones as Electron Acceptors and Redox Mediators for the Anaerobic Biotransformation of Priority Pollutants. Agrotechnology and Food Sciences, Sub-department of Environmental Technology. Wageningen University, Wageningen, The Netherlands, p 166

    Google Scholar 

  • Cervantes FJ (2006) Catalytic effects of different redox mediators on the reductive decolorization of azo dyes. Water Sci Technol 54:165–170

    Google Scholar 

  • Cervantes FJ, van der Velde S, Lettinga G, Field JA (2000) Competition between methanogenesis and quinone respiration for ecologically important substrates in anaerobic consortia. FEMS Microbiol Ecol 34:161–171

    CAS  Google Scholar 

  • Cervantes FJ, Enr??quez JE, Arvayo GE, Razo-Flores E, Field JA (2007) Biogenic sulphide plays a major role on the riboflavin-mediated decolourisation of azo dyes under sulphate-reducing conditions. Chemosphere 68:1082–1089

    CAS  Google Scholar 

  • Cervantes FJ, Garcia-Espinosa A, Moreno-Reynosa MA, Rangel-Mendez JR (2010) Immobilized redox mediators on anion exchange resins and their role on the reductive decolorization of azo dyes. Environ Sci Technol 44(5):1747–1753

    CAS  Google Scholar 

  • Chang JS, Lin YC (2000) Fed-batch bioreactor strategies for microbial decolorization of azo dye using a Pseudomonas leuteola strain. Biotechnol Pro 16:979–985

    CAS  Google Scholar 

  • Chang JS, Chou C, Lin Y, Ho J, Hu TL (2001) Kinetic Characteristics of bacterial azo-dye decolorization by Pseudomonas luteola. Water Res 35:2041–2850

    Google Scholar 

  • Chen H (2006) Recent advances in azo dye degrading enzyme research. Curr Protein Pept Sci 7(2):101–111

    CAS  Google Scholar 

  • Chen H, Feng J, Kweon O, Xu H, Cerniglia CE (2010) Identification and molecular characterization of a novel flavin-free NADPH preferred azoreductase encoded by azoB in Pigmentiphaga kullae K24. BMC Biochem 11:13

    Google Scholar 

  • Chen H, Hopper SL, Cerniglia CE (2005) Biochemical and molecular characterization of an azoreductase from Staphylococcus aureus, a tetrameric NADPH-dependent flavoprotein. Microbiology 151:1433–1441

    CAS  Google Scholar 

  • Chen JP, Lin YS (2007) Decolorization of azo dye by immobilized Pseudomonas luteola entrappe in alginate-silicate sol-gel beads. Process Biochem 42:934–942

    CAS  Google Scholar 

  • Chen KC, Huang WT, Wu JY, Houng JY (1999) Microbial decolorization of azo dyes by Proteus mirabilis. J Ind Microbiol Biotechnol 23:686–690

    CAS  Google Scholar 

  • Chen KC, Wu JY, Huang CC, Liang YM, Hwang SJ (2003a) Decolorization of azo dye by using PVA immobilized microorganisms. J Biotechnol 101:241–252

    CAS  Google Scholar 

  • Chen KC, Wu JY, Liou DJ, Hwang SJ (2003b) Decolorization of textile dyes by newly isolated bacterial strains. J Biotechnol 101:57–68

    CAS  Google Scholar 

  • Chinwetkitvanich S, Tuntoolvest M, Panswad T (2000) Anaerobic decolorization of reactive dyebath effluents by a two stage UASB system with Tapioca as co-substrate. Water Res 34:2223–2232

    CAS  Google Scholar 

  • Christie R (2001) Colour chemistry. The Royal Society of Chemistry, Cambridge, UK

    Google Scholar 

  • Chung KT, Stevens SEJ, Cerniglia CE (1992) The reduction of azo dyes by the intestinal microflora. Crit Rev Microbiol 18:175–197

    CAS  Google Scholar 

  • Cinar O, Demiröz K (2010) Biodegradation of azo dyes in anaerobic-aerobic sequencing batch reactors in biodegradation of azo dyes series. In: Atacag Erkurt H (ed) The handbook of environmental chemistry, vol 9, 1st edn. Springer, Berlin

    Google Scholar 

  • Cinar O, Yasa S, Kertmen M, Demiroz K, Yigit NO, Kitis M (2008) Effect of cycle time on biodegradation of azo dye in sequencing batch reactor. Proc Saf Environ Protect 86:455–460

    CAS  Google Scholar 

  • Costa MC, Mota S, Nascimento RF, Dos Santos AB (2010) Anthraquinone-2,6-disulfonate (AQDS) as a catalyst to enhance the reductive decolourisation of the azo dyes Reactive Red 2 and Congo Red under anaerobic conditions. Biores Technol 101(1):105–110

    CAS  Google Scholar 

  • Coughlin MF, Kinkle BK, Bishop PL (1999) Degradation of azo dyes containing amino naphthol by Sphingomonas sp strain ICX. J Ind Microbiol Biotechnol 23:341–346

    CAS  Google Scholar 

  • Coughlin MF, Kinkle BK, Bishop PL (2002) Degradation of acid orange 7 in an aerobic biofilm. Chemosphere 46:11–19

    CAS  Google Scholar 

  • Coughlin MF, Kinkle BK, Bishop PL (2003) High performance degradation of azo dye acid orange 7 and sulfanilic acid in a laboratory scale reactor after seeding with cultured bacterial strains. Water Res 37:2757–2763

    CAS  Google Scholar 

  • Dafale N, Rao NN, Meshram SU, Wate SR (2008) Decolorization of azo dyes and simulated dye bath wastewater using acclimatized microbial consortium-biostimulation and halo tolerance. Biores Technol 99:2552–2558

    CAS  Google Scholar 

  • Dafale N, Wate SR, Meshram SU, Rao NN (2010) Bioremediation of wastewater containing azo dyes through sequential anaerobic-aerobic bioreactor system and its biodiversity. Environ Rev 18:21–36

    CAS  Google Scholar 

  • Dangmann E, Stolz A, Kuhm AE, Hammer A, Feigel B, Noisommit-Rizzi M, Rizzi M, Knackmuss H-J (1996) Degradation of 4-aminobenzenesulfonate by a two-species bacterial coculture. Physiological interactions between Hydrogenophaga palleronii S1 and Agrobacterium radiobacter S2. Biodegradation 7:223–229

    CAS  Google Scholar 

  • Delee W, O’Niell C, Hawkcs FR, Pinheiro HM (1998) Anaerobic treatment of textile effluents: a reviw. J Chem Technol Biotechnol 73:323–325

    CAS  Google Scholar 

  • Diniz PE, Lopes AT, Lino AR, Serralheiro ML (2002) Anaerobic reduction of a sulfonated azo dye Congo Red by Sulphate reducing bacteria. Appl Biochem Biotechnol 97:147–163

    CAS  Google Scholar 

  • Donlon B, Razo-Flores E, Luijten M, Swarts H, Lettinga G, Field JA (1997) Detoxification and partial mineralization of the azo dye mordant orange 1 in a continuous upflow anaerobic sludge-blanket reactor. Appl Microbiol Biotechnol 47:83–90

    CAS  Google Scholar 

  • Dos Santos AB (2005) Reductive decolourisation of dyes by thermophilic anaerobic granular sludge Sub-department of Environmental Technology. Wageningen University, Wageningen, p 176

    Google Scholar 

  • Dos Santos AB, Bisschops IAE, Cervantes FJ, Van Lier JB (2004) Effect of different redox mediators during thermophilic azo dye reduction by anaerobic granular sludge and comparative study between mesophilic (30°C) and thermophilic (55°C) treatments for decolourisation of textile wastewaters. Chemosphere 55:1149–1157

    CAS  Google Scholar 

  • Dos Santos AB, Cervantes FJ, van Lier JB (2006) Potentials of high-temperature anaerobic treatment and redox mediators for the reductive decolorization of azo dyes from textile wastewaters. Water Sci Technol 54(2):151–156

    CAS  Google Scholar 

  • Dos Santos AB, Cervantes FJ, van Lier JB (2007) Review paper on current technologies for decolourisation of textile wastewaters: Perspectives for anaerobic biotechnology. Biores Technol 98:2369–2385

    CAS  Google Scholar 

  • Dos Santos AB, Cervantes FJ, Yaya-Beas RE, van Lier JB (2003) Effect of redox mediator, AQDS, on the decolorization of a reactive azo dye containing triazine group in a thremophilic anaerobic EGSB reactor. Enzyme Microbiol Technol 33:942–951

    CAS  Google Scholar 

  • Dos Santos AB, Madrid MP, Stams AJM, Van Lier JB, Cervantes FJ (2005) Azo dye reduction by mesophilic and thermophilic anaerobic consortia. Biotechnol Progr 21:1140–1145

    CAS  Google Scholar 

  • Drzyzga O, Blotevogel KH (1997) Microbial degradation of diphenylamine under anoxic conditions. Curr Microbiol 35:343–347

    CAS  Google Scholar 

  • Ekici P, Leupold G, Parlar H (2001) Degradability of selected azo dye metabolites in activated sludge systems. Chemosphere 44:721–728

    CAS  Google Scholar 

  • Elisangela F, Andrea Z, Fabiana F, Isis SS, Artur C, Lucia RD (2009a) Microaerophilic–aerobic sequential decolourization/biodegradation of textile azo dyes by a facultative Klebsiella sp. strain VN-31. Process Biochem 44:446–452

    Google Scholar 

  • Elisangela F, Andrea Z, Fabio DG, Cristiano R, Regina DL, Artur C (2009b) Biodegradation of textile azo dyes by a facultative Staphylococcus arlettae strain VN-11 using a sequential microaerophilic/aerobic process. Intl Biodeter Biodegrad 63:280–288

    CAS  Google Scholar 

  • Encinas-Yocupicio AA, Razo-Flores E, Sánchez Diaz F, Dos Santos AB, Field JA, Farre M, Barcelo D (2003) Toxicity testing of wastewater and sewage sludge by biosensors, bioassays and chemical analysis. Trends Anal Chem 22(5):299–310

    Google Scholar 

  • Farre M, Barcelo D (2003) Toxicity testing of wastewater and sewage sludge by biosensors, bioassays and chemical analysis. Trends Anal Chem 22(5):299–310

    CAS  Google Scholar 

  • Feigal BJ, Knackmuss HJ (1993) Syntropic interactions during degradation of 4-aminobenzenesulfonic acid by a two species bacterial culture. Arch Microbiol 159:124–130

    Google Scholar 

  • Field JA, Brady J (2003) Riboflavin as a redox mediator accelerating the reduction of azo dye mordant yellow 10 by anaerobic granular sludge. Water Sci Technol 48:187–193

    CAS  Google Scholar 

  • Field JA, Stams AJM, Kato M, Schraa G (1995) Enhanced biodegradation of aromatic pollutant in coculture of anaerobic and aerobic bacterial consortia. Antonie Van Leeuwenhoek 67:47–77

    CAS  Google Scholar 

  • Firmino PIM, da Silva MER, Cervantes FJ, dos Santos AB (2010) Colour removal of dyes from synthetic and real textile wastewaters in one- and two-stage anaerobic systems. Biores Technol 101:7773–7779

    CAS  Google Scholar 

  • Ganesh R, Boardman GD, Michelson D (1994) Fate of azo dyes in sludges. Water Res 28:1367–1376

    CAS  Google Scholar 

  • Georgiou D, Hatires J, Aivasidis A (2005) Microbial immobilization in a two-stage fixed bed reactor pilot plant for on-site anaerobic decolorization of textile wastewater. Enzyme Microbial Technol 37:597–605

    CAS  Google Scholar 

  • Gill M, Strauch RJ (1984) Constituents of Agaricus xanthodermus Genevier: The first naturally endogenous azo compound and toxic phenoloc metabolites Zeitschrift fur Naturforschung C. J Biosci 39c:1027–1029

    CAS  Google Scholar 

  • Golab V, Vinder A, Simonic M (2005) Efficiency of the coagulation/flocculation method for the treatment of dye bath effluent. Dyes Pigments 67:93–97

    Google Scholar 

  • González-Gutiérrez LV, González-Alatorre G, Escamilla-Silva EM (2009) Proposed pathways for the reduction of a reactive azo dye in an anaerobic fixed bed reactor. World J Microbiol Biotechnol 25:415–426

    Google Scholar 

  • Guo J, Zhou J, Wang D, Tian C, Wang P, Salah Uddin M, Yu Hui (2007) Biocalalyst effects of immobilized anthraquinone on the anaerobic reduction of azo dyes by the salt-tolerant bacteria. Water Res 41:426–432

    CAS  Google Scholar 

  • Guo J, Zhou J, Wang D, Xiang X, Yu H, Tian C, Song Z (2006) Correlation of anaerobic biodegradability and the electrochemical chatacteristic of azo dyes. Biodegradation 17:341–346

    CAS  Google Scholar 

  • Hao OJ, Kim H, Chang PC (2000) Decolorization of wastewater. Crit Rev Env Sci Technol 30:449–505

    CAS  Google Scholar 

  • Haug W, Schmidt A, Nortemann B, Hempel DC, Stolz A, Knackmuss HJ (1991) Mineralization of the sulfonated azo dye Mordant Yellow 3 by a 6-aminonaphthalene-2-sulfonate-degrading bacterial consortium. Appl Environ Microbiol 57:3144–3149

    CAS  Google Scholar 

  • He F, Hu WR, Li YZ (2004) Investigation of isolation and immobilization of a microbial consortium for decoloring of azo dye 4BS. Water Res 38:3596–3604

    CAS  Google Scholar 

  • Hinter J-P, Lechner C, Riegret U, Kuhm AE, Storm T, Reemtsma T, Stolz A (2001) Direct ring fission of salicylate by a salicylate 1,2-Dioxygensae activity from Pseudaminobacter salicylatoxidans. J Bacteriol 183:6936–6942

    Google Scholar 

  • Hopper SW (1991) Biodegradation of sulfonated aromatics. In: Chaudhry GR (ed) Biodegradation and bioremediation of toxic themicals. Chapman and Hall, London, pp 169–182

    Google Scholar 

  • Houk VS (1992) The genotoxicity of industrial wastes and effluents: A review. Mutat Res 277:91–138

    CAS  Google Scholar 

  • Hsueh CC, Chen BY (2008) Exploring effects of chemical structure on azo dye decolorization characteristics by Pseudomonas luteola. J Hazard Mater 154:703–710

    CAS  Google Scholar 

  • Hsueh CC, Chen BY, Yen CY (2009) Understanding effects of chemical structure on azo dye decolorization characteristics by Aeromonas hydrophila. J Hazard Mater 167:995–1001

    CAS  Google Scholar 

  • Isik M, Sponza DT (2005a) Effects of alkalinity and co-substrate on the performance of an upflow anaerobic sludge blanket (UASB) reactor through decolorization of Congo Red azo dye. Biores Technol 96:633–643

    CAS  Google Scholar 

  • Isik M, Sponza DT (2005b) Substrate removal kinetics in an upflow anaerobic sludge blanket reactor decolorizing simulated textile wastewater. Process Biochem 40:1189–1193

    CAS  Google Scholar 

  • Ito K, Nakanishi M, Lee WC, Sasaki H, Zenno S, Saigo K, Kitade Y, Tanokura M (2006) Three-dimensional structure of AzoR from Escherichia coli An oxidereductase conserved in microorganisms. J Biol Chem 281:20567–20576

    CAS  Google Scholar 

  • Jadhav SU, Kalme SD, Govindwar SP (2008) Biodegradation of Methyl red by Galactomyces geotrichum MTCC 1360. Intl Biodeter Biodegrad 62(2):135–142

    CAS  Google Scholar 

  • Jahnke M, Banna T, Klintworth R, Auling G (1990) Mineralisation of Orthanilic acid is a plasmid asociated trait in Alcaligenes sp. O-1. J Gen Microbiol 136:2241–2249

    CAS  Google Scholar 

  • Jensen J, Cornett C, Olsen CE, Bondesen S, Christensen J, Christensen LA, Tjornelund J, Hansen SH (1993) Identification of oxidation products of 5-aminosalicylic acids in faeces and the study of their formation in vitro. Biochem Pharm 45:1201–1209

    CAS  Google Scholar 

  • Jing W, Lihua L, Zhou J, Hong L, Liu G, Jin R, Yang F (2009) Enhanced biodecolorization of azo dyes by electropolymerization-immobilized redox mediator. J Hazard Mater 168(2–3):1098–1104

    Google Scholar 

  • Junker F, Leisinger T, Cook AM (1994) 3 Sulphocatechol 2,3 dioxygenase and other dioxygenases (E.CI.13.II.2 and ECI.14.12.) in the degradative pathway of 2-aminobenzenesulfonic acid and 4-toluenesulphonic acids in Alcaligenes sp. strain. Microbiology 140:1713–1722

    CAS  Google Scholar 

  • Kahng HY, Kukor JJ, Oh KH (2000) Characterization of strain HY99, a novel microorganism capable of aerobic and anaerobic degradation of aniline. FEMS Microbiol Lett 190:215–221

    CAS  Google Scholar 

  • Kalme SD, Parshetti GK, Jadhav SU, Govindwar SP (2007) Biodegradation of benzidine based dye Direct Blue-6 by Pseudomonas desmolyticum NCIM 2112. Biores Technol 98(7):1405–1410

    CAS  Google Scholar 

  • Kalyuzhnyl S, Sklyar V, Mosolova T, Kucherenko I, Russkova Z, Degtyaryova N (2000) Methanogenic biodegradation of aromatic amines. Water Sci Technol 42:363–370

    Google Scholar 

  • Kampfer P, Muller C, Mau M, Neef A, Auling G, Busse HJ, Osborne AM, Stolz A (1999) Description of Pseudaminobacter gen Nov. with two new species P. salicylatoxidans sp. nov. and P. defluvii sp. nov. Intl J Syst Bacteriol 149:887–897

    Google Scholar 

  • Kapdan IK, Alparslan S (2005) Application of anaerobic–aerobic sequential system to real textile wastewater for color and COD removal. Enz Microb Technol 36:273–279

    CAS  Google Scholar 

  • Kapdan IK, Kargi F, McMullan G, Marchant R (2000) Decolorization of textile dye stuffs by a mixed bacterial consortium. Biotechnol Lett 22:1179–1181

    CAS  Google Scholar 

  • Kasper HF, Wuhrmann K (1978) Kinetic parameters and relative turnover of some important catabolic reactions in digesting sludge. Appl Environ Microbiol 36:1–7

    Google Scholar 

  • Keck A, Conradt D, Mahler A, Stolz A, Mattes R, Klein J (2006) Identification and functional analysis of the genes for naphthalenesulfonate catabolism by Sphingomonas xenophaga BN6. Microbiology 152(7):1929–1940

    CAS  Google Scholar 

  • Keck A, Klein J, Kudlich M, Stolz A, Knackmuss HJ, Mattes R (1997) Reduction of azo dyes by redox mediators originating in the naphthalenesulfonic acid degradation pathway of Sphingomonas sp. strain BN6. Appl Environ Microbiol 63:3684–3690

    CAS  Google Scholar 

  • Keenan PO, Knight AW, Billinton N, Cahill PA, Dalrymple IM, Hawkyard CJ, Stratton-Campbell D, Walmsley RM (2007) Clear and present danger? The use of a yeast biosensor to monitor changes in the toxicity of industrial effluents subjected to oxidative colour removal treatments. J Environ Monit 9:1394–1401

    CAS  Google Scholar 

  • Khalid A, Arshad M, Crowley DE (2008a) Accelerated decolorization of structurally different azo dyes by newly isolated bacterial strains. Appl Microbiol Biotechnol 78:361–369

    CAS  Google Scholar 

  • Khalid A, Arshad M, Crowley DE (2008b) Decolorization of azo dyes by Shewanella sp. under saline conditions. Appl Microbiol Biotechnol 79(6):1053–1059

    CAS  Google Scholar 

  • Khalid A, Arshad M, Crowley DE (2010) Bioaugmentation of azo dyes in biodegradation of azo dyes series. In: Atacag Erkurt H (ed) The handbook of environmental chemistry, vol 9, 1st edn. Springer, Berlin

    Google Scholar 

  • Khehra MS, Saini HS, Sharma DK, Chadha BS, Chimni SS (2005) Decolorization of various azo dyes by bacterial consortia. Dyes Pigment 67:55–61

    CAS  Google Scholar 

  • Kodam KM, Soojhawon I, Lokhande PD, Gawai KR (2005) Microbial decolorization of reactive azo dyes under aerobic conditions. World J Microbiol Biotechnol 21:367–370

    CAS  Google Scholar 

  • Kolbener P, Baumann U, Cook AM, Leisinger T (1994) 3-Nitrobenzenesulfonicacid and 3-aminobenzenesulfonic acid in a laboratory trickling filter: Biodegradability with different activated sludges. Water Res 28:1855–1860

    Google Scholar 

  • Kolekar YM, Pawar SP, Gawai KR, Lokhande PD, Shouche YS, Kodam KM (2008) Decolorization and degradation of Disperse Blue 79 and Acid Orange 10, by Bacillus fusiformis KMK5 isolated from the textile dye contaminated soil. Biores Technol 99(18):8999–900

    CAS  Google Scholar 

  • Kudlich M, Bishop P, Knackmuss HJ, Stolz A (1996) Synchronous anaerobic and aerobic degradation of the sulfonated azo dye Mordant Yellow 3 by immobilized cells from a naphthalenesulfonate-degrading mixed culture. Appl Microbiol Biotechnol 46:597–603

    CAS  Google Scholar 

  • Kudlich M, Hetheridge MJ, Knackmuss HJ, Stolz A (1999) Autoxidation reactions of different aromatic o-aminohydroxynaphthalenes that are formed during the anaerobic reduction of sulfonated azo dyes. Environ Sci Technol 33:869–901

    Google Scholar 

  • Kudlich M, Keck A, Klein J, Stolz A (1997) Localization of the enzyme system involves in anaerobic reduction of azo dyes by Sphingomonas sp. strain BN6 and e.ect of artificial redox mediators on the rate of azo dye reduction. Appl Environ Microbiol 63:3691–3694

    CAS  Google Scholar 

  • Kulla HG, Klausener F, Mayer U, Ludeke B, Leisinger T (1983) Interference of aromatic sulfo groups in the microbial degradation of the azo dyes Orange I and Orange II. Arch Microbiol 135:1–7

    CAS  Google Scholar 

  • Levine WG (1991) Metabolism of azo dyes: Implication for detoxification and activation. Drug Metabol Rev 23:253–309

    CAS  Google Scholar 

  • Li JG, Lalman JA, Biswas N (2004) Biodegradation of Red B dye by Bacillus sp. OY1–2. Environ Technol 25:1167–1176

    CAS  Google Scholar 

  • Liu G, Zhou J, Fu QS, Wang J (2009) The Escherichia coli Azoreductase AzoR Is Involved in Resistance to Thiol-Specific Stress Caused by Electrophilic Quinones. J Bacteriol 191:6394–6400

    CAS  Google Scholar 

  • Liu G, Zhou J, Lv H, Xiang X, Wang J, Zhou M, Qv Y (2007) Azoreductase from Rhodobacter sphaeroides AS1.1737 is a flavodoxin that also functions as nitroreductase and flavin mononucleotide reductase. Appl Microbiol Biotechnol 76(6):1271–1279

    CAS  Google Scholar 

  • Locher HH, Thurnheer T, Leisinger T, Cook AM (1989) 3-nitrobenzenesulufonate, 3-aminobenzenesulfonate and 4-aminobenzenesulfonate as sole carbon sources for bacteria. Appl Environ Microbiol 55:492–494

    CAS  Google Scholar 

  • Lopez-Grimau V, Guitierrez MC (2005) Decolorization of simulated reactive dyebath effluents by electrochemical oxidation assisted by UV light. Chemosphere 62:106–112

    Google Scholar 

  • Lu H, Zhou J, Wang J, Si W, Teng H, Liu G (2010) Enhanced biodecolorization of azo dyes by anthraquinone-2-sulfonate immobilized covalently in polyurethane foam. Biores Technol 101:7185–7188

    CAS  Google Scholar 

  • Lu X, Liu L, Yang B, Chen J (2009) Reuse of printing and dyeing wastewater in processess assessed by pilot-scale test using combined biological process and sub-filter technology. J Clean Prod 17:111–114

    Google Scholar 

  • Lu X, Liu R (2010) Treatment of azo dye-containing wastewater using integrated processes in biodegradation of azo dyes. Handb Environ Chem 9:133–155

    Google Scholar 

  • Maier J, Kandelbaner A, Eracher A, Cavaco-Paulo A, Gubitz GM (2004) A new alkali-thermostable azoreductase from Bacillus sp. strain SF. Appl Environ Microbiol 70:837–844

    CAS  Google Scholar 

  • Mansour HB, Mosrati R, Corroler D, Ghedira K, Barillier D, Chekir-Ghedira L (2009) Mutagenicity and genotoxicity of acid yellow 17 and its biodegradation products. Drug Chem Toxicol 32:222–229

    Google Scholar 

  • Manu B, Chaudhari S (2003) Decolorization of indigo and azo dyes in semicontinuous reactors with long hydraulic retention time. Process Biochem 38:1213–1221

    CAS  Google Scholar 

  • McMullan G, Meehan C, Conneely A, Kirby N, Robinson T, Nigam P, Banat IM, Merchant R, Smyth WF (2001) Microbial decolorization and degradation of textile dyes. Appl Microbiol Biotechnol 56:81–87

    CAS  Google Scholar 

  • Méndez-Paz D, Omil F, Lema LM (2003) Modeling of the Acid Orange 7 anaerobic biodegradation. Water Sci Technol 48:133–139

    Google Scholar 

  • Mezohegyi G, Kolodkin A, Castro UI, Bengoa C, Stuber F, Font J, Fabregat A (2007) Effective anaerobic decolorization of azo dye acid orange 7 in continuous upflow packed-bed reactor using biological activated carbon system. Ind Eng Chem Res 46:6788–6792

    CAS  Google Scholar 

  • Moir D, Masson S, Chu I (2001) Structure-activity relationship study on the bioreduction of azo dyes by Clostridium paraputrificum. Environ Toxicol Chem 20:479–484

    CAS  Google Scholar 

  • Moosvi S, Keharia H, Madamawar D (2005) Decolorization of textile dye reactive violet by a newly isolated bacterial consortium. RVM 11.1. World J Microbiol Biotechnol 21:667–672

    CAS  Google Scholar 

  • Moutaouakkil A, Zeroual Y, Dzayri FZ, Talbi M, Lee K, Blaghen M (2003) Purification and partial characterization of azoreductase from Enterobacter agglomerans. Arch Biochem Biophys 413:139–146

    CAS  Google Scholar 

  • Moutaouakkil A, Zeroual Y, Dzayri FZ, Talbi M, Lee K, Blaghen M (2004) Decolorization of azo dyes with Enterobacter agglomerans immobilized in different supports by by using fluidized bed bioreactor. Curr Microbiol 48:124–129

    CAS  Google Scholar 

  • Nachiyar CV, Rajakumar GS (2005) Purification and characterization of an oxygen insensitive azoreductase from Pseudomonas aeruginosa. Enzyme Microbial Technol 36:503–509

    CAS  Google Scholar 

  • Nachiyar CV, Rajkumar GS (2003) Degradation of tannery and textile dye, Navitan Fast Blue S5R by Pseudomonas aeruginosa. World J Microbiol Biotechnol 19:609–614

    CAS  Google Scholar 

  • Nachiyar CV, Rajkumar GS (2004) Mechanism of Navitan fast Blue S5R degradation by Pseudomonas aeruginosa. Chemosphere 57:165–169

    Google Scholar 

  • Nachiyar CV, Vijaylakshmi K, Muralidharan D, Rajkumar GS (2007) Mineralization of metalinic acid by Pseudomonas aeruginosa CLRI BL22. World J Microbiol Biotechnol 23:1733–1738

    CAS  Google Scholar 

  • Nigam P, Banat IM, Singh D, Marchant R (1996) Microbial process for the decolorization of textile effluent containing azo, diazo and reactive dyes. Process Biochem 31:435–442

    CAS  Google Scholar 

  • Nortemann B, Baumgarten J, Rast HG, Knackmuss H-J (1986) Bacterial communities degrading amino and naphthalene-2-sulfonates. Appl Environ Microbiol 52:1195–1202

    CAS  Google Scholar 

  • Ohe T, Ohmoto T, Kobayashi Y, Sato A, Watanabe Y (1990) Microbial degradation of 1,6-and 2,6-naphthalene disulfonic acids by Pseudomonas sp. TA-2. Agricult Biol Chem 54:669–675

    CAS  Google Scholar 

  • Ollgaard H, Frost L, Galster J, Hensen OC (1999) Survey of azo-colorants on Denmark: Milgoproject 509, Danish Environmental Protection Agency

    Google Scholar 

  • Olukanni OD, Osuntokia AA, Kalyani DC, Gbenlea GO, Govindwar SP (2010) Decolorization and biodegradation of ReactiveBlue13 by Proteus mirabilis LAG. J Hazard Mater 184:290–298

    CAS  Google Scholar 

  • O’Neill C, Hawkes FR, Hawkes DL, Lourenco ND, Pinheiro HM, Delee W (1999) Color in textile effluents sources, measurement, discharge consents and simulation: a review. J Chem Technol Biotechnol 53:249–254

    Google Scholar 

  • Ooi T, Shibata T, Matsumoto K, Kinoshita S, Taguchi S (2009) Comparative enzymatic analysis of azoreductases from Bacillus sp. B29. Biosci Biotechnol Biochem 73(5):1209–1211

    CAS  Google Scholar 

  • Oxspring DA, McMullan G, Smyth WF, Marchant R (1996) Decolourisation and metabolism of the reactive textiledye, Remazol Black B, by an immobilized microbial consortium. Biotechnol Lett 18:527–530

    CAS  Google Scholar 

  • Öztürk A, Abdullah MI (2006) Toxicological effect of indole and its azo dye derivatives on some microorganisms under aerobic conditions. Sci Total Environ 358:137–142

    Google Scholar 

  • Padmavathy S, Sandhya S, Swaminathan K, Subrahmanyam YV, Kaul SN (2003) Comparison of decolorization of reactive azo dyes by microorganisms isolated from various sources. J Environ Sci 15:628–633 China

    Google Scholar 

  • Pandey A, Singh P, Iyengar L (2007) Bacterial decolorization and degradation of azo dyes. Intl Biodeter Biodegrad 59(2):73–84

    CAS  Google Scholar 

  • Park HO, Oh S, Bade R, Shin WS (2010) Application of A2O moving-bed biofilm reactors for textile dyeing wastewater treatment. Korean J Chem Eng 27:893–899

    CAS  Google Scholar 

  • Parvez S, Venkataraman C, Mukherji S (2005) A review on advantages of implementing luminescence inhibition test (Vibrio fischeri) for acute toxicity prediction of chemicals. Environ Intl 32:265–288

    Google Scholar 

  • Pearce CI, Christie R, Boothman C, Von Canstein H, Guthrie JT, Lloyd JR (2006) Reactive azo dye reduction by Shewanella Strain J18 143. Biotechnol Bioeng 95:692–703

    CAS  Google Scholar 

  • Pearce CI, Lloyd JR, Guthrie JT (2003) The removal of color from textile wastewater using whole bacterial cells. A review. Dyes Pigments 58:179–196

    CAS  Google Scholar 

  • Perei K, Rákhely G, Kiss I, Polyák B, Kovács KL (2001) Biodegradation of sulfanilic acid by Pseudomonas paucimobilis. Appl Microbiol Biotechnol 55:101–107

    CAS  Google Scholar 

  • Pinheiro HM, Tauraud E, Thomas O (2004) Aromatic amines from azo dye reduction: status review with emphasis on direct UV spectrophotometric detection in textile industry wastewaters. Dyes Pigments 61:121–139

    CAS  Google Scholar 

  • Plumb JJ, Bell J, Stuckey DC (2001) Microbial populations associated with treatment of an industrial dye effluent in an anaerobic baffled reactor. Appl Environ Microbiol 67:3226–3235

    CAS  Google Scholar 

  • Puvaneshwari N, Muthukrishnan J, Gunasekaran P (2006) Toxicity assessment and microbial degradation of azo dyes. Indian J Exp Biol 44:618–626

    Google Scholar 

  • Rafii F, Cerniglia CE (1995) Reduction of azo dyes and nitroaromatic compounds by bacterial enzymes from the human intestinal tract. Environ Health Perspect 103(5):17–19

    CAS  Google Scholar 

  • Rafii F, Coleman T (1999) Cloning and expression in Escherichia coli of an azoreductase gene from Clostridium perfringens and comparison with azoreductase genes from other bacteria. J Basic Microbiol 39(1):29–35

    CAS  Google Scholar 

  • Rafii F, Franklin W, Cerniglia CE (1990) Azoreductase activity of anaerobic bacteria isolated from human intestinal microflora. Appl Environ Microbiol 56:2146–2151

    CAS  Google Scholar 

  • Rai H, Bhattacharya M, Singh J, Bansal TK, Vats P, Banerjee UC (2005) Removal of dyes from the effluent of textile and dyestuff manufacturing industry: a review of emerging techniques with reference to biological treatment. Crit Rev Environ Sci Technol 35:219–238

    CAS  Google Scholar 

  • Rajaguru P, Suba S, Palanivelm M, Kalaiselvi K (2003) Genotoxicity of a polluted river system measured using the alkaline comet assay on fish and earthworm tissues. Environ Mol Mutagen 41:85–91

    CAS  Google Scholar 

  • Rajaguru P, Vidya L, Baskarasethupathi B, Kumar PA, Palanivel M, Kalaiselvi K (2002) Genotoxicity evaluation of polluted ground water in human peripheral blood lymphocytes using the comet assay. Mutat Res 517:29–37

    CAS  Google Scholar 

  • Rajamohan N, Karthikeyan C (2006) Kinetics studies of dyes effluent degradation by Pseudomonas stutzeri. J Solid Waste Technol Manag 1–5. Retrieved from http://www.eco-web.com/editorial/061103.html

  • Rau J, Knackmuss HJ, Stolz A (2002) Effects of different quinoid redox mediators on the anaerobic reduction of azo dyes by bacteria. Environ Sci Technol 36:1497–1504

    CAS  Google Scholar 

  • Rau J, Stolz A (2003) Oxygen-insensitive nitroreductases NfsA and NfsB of Escherichia coli function under anaerobic conditions as Lawsone-dependent azo reductases. Appl Environ Microbiol 69:3448–3455

    CAS  Google Scholar 

  • Razo-Flores E, Donlon B, Field J, Lettinga G (1996) Biodegradability of N-substituted aromatics and alkylphenols under methanogenic conditions using granular sludge. Wat Sci Technol 33:47–57

    CAS  Google Scholar 

  • Razo-Flores E, Luijten M, Donlon B, Lettinga G, Field J (1997a) Biodegradation of selected azo dyes under methanogenic conditions. Water Sci Technol 36:65–72

    CAS  Google Scholar 

  • Razo-Flores E, Luijten M, Donlon B, Lettinga G, Field J (1997b) Complete biodegradation of the azo dye azosalicylate under anaerobic conditions. Environ Sci Technol 31:2098–2103

    CAS  Google Scholar 

  • Robinson T, McMullan G, Marchant R, Nigam P (2001) Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative. Biores Technol 77:247–255

    CAS  Google Scholar 

  • Rozgaj R, Glancer SM (1992) Total degradation of 6-amnionaphthalene 2-sulfonic acid by a mixed culture consisting of different bacterial genera. FEMS Microbiol Eco 86:229–236

    CAS  Google Scholar 

  • Ruiz-Arias A, Juárez-Ramírez C, Cobos-Vasconcelos DD, Ruiz-Ordaz N, Salmerón-Alcocer A, Ahuatzi-Chacón D, Galíndez-Mayer J (2010) Aerobic biodegradation of a sulfonated phenylazonaphthol dye by a bacterial community immobilized in a multistage packed-bed BAC reactor. Appl Biochem Biotechnol 162(6):1689–1707

    CAS  Google Scholar 

  • Russ R, Rau J, Stolz A (2000) The function of cytoplasmic flavin reductases in the reduction of azo dyes by bacteria. Appl Environ Microbiol 66:1429–1434

    CAS  Google Scholar 

  • Ryan A, Laurieri N, Westwood I, Wang CJ, Lowe E, Sim E (2010) A novel mechanism for azoreduction. J Mol Biol 400:24–37

    CAS  Google Scholar 

  • Sandhya S (2010) Biodegradation of azo dyes under anaerobic condition: role of azoreductase. In: Atacag Erkurt H (ed) The handbook of environmental chemistry, vol 9. Springer, Berlin, pp 39–57

    Google Scholar 

  • Saratale RG, Saratale GD, Chang JS, Govindwar SP (2010) Decolorization and biodegradation of reactive dyes and dye wastewater by a developed bacterial consortium. Biodegradation 21:999–1015

    CAS  Google Scholar 

  • Saratale RG, Saratale D, Chang JS, Govindwar SP (2011) Bacterial decolorization and degradation of azo dyes: a review. J Taiwan Inst Chem Eng 42:138–157

    CAS  Google Scholar 

  • Sarayu K, Sandhya S (2010) Aerobic Biodegradation Pathway for Remazol Orange by Pseudomonas aeruginosa. Appl Biochem Biotechnol 160(4):1241–1253

    CAS  Google Scholar 

  • Savelieva O, Kotova I, Roelofsenm W, Stams AJM, Netrusov A (2004) Utilization of aminoaromatic acids by a methanogenic enrichment culture and a novel Citrobacter freundii strain. Arch Microbiol 181:163–170

    CAS  Google Scholar 

  • Semde R, Pierre D, Geuskens G, Devleeschouwer M, Moes AJ (1998) Study of some important factors involved in azo derivative reduction by Clostridium perfringens. Intl J Pharm 161:45–54

    CAS  Google Scholar 

  • Senan RC, Abraham TE (2004) Bioremediation of textile azo dyes by aerobic bacterial consortium. Biodegradation 15(4):275–280

    CAS  Google Scholar 

  • Silveira E, Marques PP, Silva SS, Lima-Filho JL, Porto ALF, Tambourgi EB (2009) Selection of Pseudomonas for industrial textile dyes decolorization. Intl Biodeter Biodegrad 63:230–235

    CAS  Google Scholar 

  • Singh P, Birkeland NK, Iyengar L, Gurunath R (2006) Mineralization of 4-aminobenzenesulfonate (4-ABS) by Agrobacterium sp. strain PNS-1. Biodegradation 17:495–502

    CAS  Google Scholar 

  • Singh S, Singh P, Awasthi SK, Pandey A, Iyengar L (2008) Mineralizationn of 2-aminobenzenesulfonate by a bacterial cosortium. World J Microbiol Biotechnol 24:841–847

    CAS  Google Scholar 

  • Srinivasan A, Viraraghavan T (2010) Decolorization of dye wastewaters by biosorbents: a review. J Environ Manag 91:1915–1929

    CAS  Google Scholar 

  • Stolz A (1999) Degradation of substituted naphthalenesulfonic acids by Sphingomonas xenophaga BN6. J Industrial Microbiol Biotechnol 23:391–399

    CAS  Google Scholar 

  • Stolz A (2001) Basic and applied aspects in the microbial degradation of azo dyes. Appl Microbiol Biotechnol 56:69–80

    CAS  Google Scholar 

  • Su Y, Zhang Y, Wang J, Zhou J, Lu X, Lu H (2009) Enhanced bio-decolorization of azo dyes by co-immobilized quinone-reducing consortium and anthraquinone. Biores Technol 100(12):2982–2987

    CAS  Google Scholar 

  • Sugiura W, Miyashita T, Yokoyama T, Arai M (1999) Isolation of azo-dye-degrading microorganisms and their application to white discharge printing of fabric. J Bioscien Bioeng 88(5):577–581

    CAS  Google Scholar 

  • Suzuki Y, Yoda T, Ruhul A, Sagiura W (2001) Molecular cloning and characterization of the gene encoding azoreductase from Bacillus sp. OY 1–2 isolated from soil. J Biol Chem 246:9059–9065

    Google Scholar 

  • Swaminathan K, Sandhya S, Carmalin Sophia A, Pachhade K, Subrahmanyam YV (2003) Decolorization and degradation of H-acid and other dyes using ferrous-hydrogen peroxide system. Chemosphere 50:619–625

    CAS  Google Scholar 

  • Swati MJ, Inamdar SA, Telke AA, Tamboli DP, Govindwar SP (2010) Exploring the potential of natural bacterial consortium to degrade mixture of dyes and textile effluent. Int Biodeter Biodegrad 64:622–628

    Google Scholar 

  • Talarposhti AM, Donnelly T, Anderson G (2001) Color removal from a simulated dye wastewater using a two-phase anaerobic packed bed reactor. Water Res 35:425–432

    CAS  Google Scholar 

  • Tan L, Qu Y, Zhou J, Ma F, Li A (2009a) Dynamics of microbial community for X-3B wastewater decolorization coping with high-salt and metal ions conditions. Biores Technol 100:3003–3009

    CAS  Google Scholar 

  • Tan L, Qu YY, Zhou JT, Li A, Gou M (2009b) Identification and characteristics of a novel salt-tolerant Exiguobacterium sp for azo dyes decolorization. Appl Biochem Biotechnol 159(3):728–738

    CAS  Google Scholar 

  • Tan NCG, Prenafeta-Boldu FX, Opsteeg JL, Lettinga G, Field JA (1999) Biodegradation of azo dyes in cocultures of anaerobic granular sludge with aerobic aromatic amine degrading enrichment cultures. Appl Microbiol Biotechnol 51:865–871

    CAS  Google Scholar 

  • Tan NCG, van Leeuwen A, van Voorthuizen EM, Slenders P, Prenafeta-Boldu FX, Temmink H, Lettinga G, Field JA (2005) Fate and biodegradability of sulfonated aromatic amines. Biodegradation 16:527–537

    CAS  Google Scholar 

  • Thurnheer T, Kohler T, Cook AM, Leisinger T (1986) Orthanilic acid and analogues as carbon sources for bacteria: growth physiology and enzymic desulphonation. J Gen Microbiol 132:1215–1220

    CAS  Google Scholar 

  • Umbuzeiro GA, Freeman H, Warren SH, Oliveira DP, Terao Y, Watanabe T, Claxton LD (2005) The contribution of azo dyes to the mutagenic activity of the Cristais River. Chemosphere 60:55–64

    CAS  Google Scholar 

  • VA Tech WABAG (2003) Drews Merane treats color by bacteria. Online at www.Vatechwabag.com

  • Van der Zee FP, Burwman RHM, Strik DPTB, Lettinga G, Field JA (2001a) Application of redox mediators to accelerate the transformation of reactive azo dyes in anaerobic bioreactor. Biotechnol Bioeng 75:691–701

    Google Scholar 

  • Van der Zee FP, Bisschops IAE, Blanchard VG, Bouwman RHM, Lettinga G, Field JA (2003) The contribution of biotic and abiotic processes during azo dye reduction in anaerobic sludge. Water Res 37:3098–3109

    Google Scholar 

  • Van der Zee FP, Cervantes FJ (2009) Impact and application of electron shuttles on the redox (Bio) transformation of contaminants: a review. Biotechnol Adv 27:256–277

    Google Scholar 

  • Van der Zee FP, Lettinga G, Field JA (2000) The role of (auto) catalysis in the mechanism of anaerobic azo reduction. Water Sci Technol 42:301–308

    Google Scholar 

  • Van der Zee FP, Lettinga G, Field JA (2001b) Azo dye decolorization by anaerobic granular sludge. Chemosphere 44:1169–1176

    Google Scholar 

  • Van der Zee FP, Villaverde S (2005) Combined anaerobic-aerobic treatment of azo dyes-a short review of bioreactor studie. Water Res 39:1425–1440

    Google Scholar 

  • Vandevivere PC, Binachi R, Verstrate W (1998) Treatment of wastewater from textile Wet processing industry: review of emerging technologies. J Chem Technol Biotechnol 72:289–302

    CAS  Google Scholar 

  • Walker R, Ryan AJ (1971) Some molecular parameters influencing rate of reductions of azo compounds by intestinal microflora. Xenobiotica 1:483–486

    CAS  Google Scholar 

  • Wang A, Qu J, Liu H, Ge J (2004) Degradation of azo dye Acid Red 14 in aqueous solution by electrokinetic and electooxidation process. Chemosphere 55:1189–1196

    CAS  Google Scholar 

  • Wang CJ, Hagemeier C, Rahman N, Lowe E, Noble M, Coughtrie M, Sim E, Westwood I (2007) Molecular cloning, characterisation and ligand-bound structure of an azoreductase from Pseudomonas aeruginosa. J Mol Biol 373(5):1213–1228

    CAS  Google Scholar 

  • Wang X, Cheng X, Sun D, Qi H (2008) Biodecolorization and partial mineralization of Reactive Black 5 by a strain of Rhodopseudomonas palustris. J Environ Sci 20:1218–1225

    CAS  Google Scholar 

  • Wang YQ, Zhang JS, Zhou JT, Zhang JP (2009) Biodegradation of 4-aminobenzenesulfonate by a novel Pannonibacter sp. W1 isolated from activated sludge. J Hazard Mater 169:1163–1167

    CAS  Google Scholar 

  • Weber EJ (1996) Iron mediated reductive transformation: investigation of reaction mechanism. Environ Sci Techol 30:716–719

    CAS  Google Scholar 

  • Weber EJ, Wolfe NL (1987) Kinetic studies of the reduction of aromatic azo compounds in anaerobic sediment/water systems. Environ Toxicol Chem 6:911–919

    CAS  Google Scholar 

  • Weisburger JH (2002) Comments on the history and importance of aromatic and heterocyclic amines in public health. Mutat Res 30:506–507

    Google Scholar 

  • Willetts JRM, Ashbolt NJ, Moosbrugger RE, Aslam MR (2000) The use of a thermophilic anaerobic system for pretreatment of textile dye wastewater. Water Sci Technol 42:309–316

    CAS  Google Scholar 

  • Wittich RM, Rast HG, Knackmuss HJ (1988) Degradation of Naphthalene-2,6- and Naphthalene-1,6-Disulfonic Acid by a Moraxella sp. Appl Environ Microbiol 54(7):1842–1847

    CAS  Google Scholar 

  • Xingzu W, Xiang C, Dezhi S, Hong Q (2008) Biodecolorization and partial mineralization of Reactive Black 5 by a strain of Rhodopseudomonas palustris. J Environ Sci 20:1218–1225

    Google Scholar 

  • Xu M, Guo J, Sun G (2007) Biodegradation of textile azo dye by Shewanella decolorationis S12 under microaerophilic conditions. Appl Microbiol Biotechnol 76(3):719–726

    CAS  Google Scholar 

  • Yemashova N, Telegina A, Kotova I, Netrusova A, Kalyuzhnyl S (2004) Decolorization and Partial degradation of selected azo dyes by methanogenic sludge. Appl Biochem Biotechnol 119:31–40

    CAS  Google Scholar 

  • Yoo ES (2002) Chemical decolorization of the azo dye CI Reactive Orange 96 by various organic/inorganic compounds. J Chem Technol Biotechnol 77:481–485

    CAS  Google Scholar 

  • Yoo ES, Libra J, Adrian L (2001) Mechanism of decolrization of azo dyes in an anaerobic mixed culture. J Environ Eng (ASCE) 127:844–849

    CAS  Google Scholar 

  • Yoo ES, Libra J, Wiesmann U (2000) Reduction of azo dyes by Desulfovibrio desulfuricans. Water Sci Technol 41:15–22

    CAS  Google Scholar 

  • Yu J, Wang X, Yue PL (2001) Optimal decolorization and kinetic modeling of synthetic dyes by Pseudomonas strains. Water Res 35:3579–3586

    CAS  Google Scholar 

  • Zeroual Y, Kim BS, Yang MW, Blaghen M, Lee KM (2007) Decolorization of some Azo dyes by immobilized Geotrichum sp. biomass in fluidized bed reactor. Appl Biochem Biotechnol 142:307–316

    CAS  Google Scholar 

  • Zimmermann T, Gasser F, Kulla H, Leisinger T (1984) Comparison of two bacterial azoreductases acquired during adaptation to growth on azo dyes. Arch Microbiol 138:37–43

    CAS  Google Scholar 

  • Zimmermann T, Kulla H, Leisinger T (1982) Properties of purified orange II-azoreductase, the enzyme initiating azo dye degradation by Pseudomonas KF46. Eur J Biochem 129:197–203

    CAS  Google Scholar 

  • Zollinger H (1991) Color chemistry, 2nd edn, VCH Weinheim Impact and application of electron shuttles on the redox (bio)transformation of contaminants: a review

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anjali Pandey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Singh, P., Iyengar, L., Pandey, A. (2012). Bacterial Decolorization and Degradation of Azo Dyes. In: Singh, S. (eds) Microbial Degradation of Xenobiotics. Environmental Science and Engineering(). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23789-8_4

Download citation

Publish with us

Policies and ethics