Skip to main content

Microbial Degradation of Polychlorophenols

  • Chapter
  • First Online:
Book cover Microbial Degradation of Xenobiotics

Part of the book series: Environmental Science and Engineering ((ESE))

Abstract

Polychlorophenols are major environmental pollutants, and their degradation by microorganisms has been extensively studied for the purpose of bioremediation. Three different metabolic pathways for aerobic degradation of polychlorophenols have been completely worked out, revealing the metabolic diversity for these structurally similar compounds. Substituted quinols, rather than catechols, are key metabolic intermediates of polychlorophenol biodegradation. Substituted quinols and quinones are also called as p–hydroquinones and p-benzoquinones, reflecting the reduced and oxidized forms. For example, tetrachloroquinol is the same as tetrachloro-p-hydroquinone, and tetrachloroquinone is often referred as tetrachloro-p-benzoquinone. Characterization of individual enzymes has led to the discoveries of novel dechlorination mechanisms. The genes coding for the enzymes have been cloned and sequenced, and the gene organization and regulation suggest that recent gene recruitments have occurred for the degradation of some polychlorophenols.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anandarajah K, Kiefer PMJ, Donohoe BS, Copley SD (2000) Recruitment of a double bond isomerase to serve as a reductive dehalogenase during biodegradation of pentachlorophenol. Biochemistry 39:5303–5311

    CAS  Google Scholar 

  • Apajalahti JH, Salkinoja-Salonen MS (1987) Complete dechlorination of tetrachlorohydroquinone by cell extracts of pentachlorophenol-induced Rhodococcus chlorophenolicus. J Bacteriol 169:5125–5130

    CAS  Google Scholar 

  • Aranda C, Godoy F, Gonzalez G, Homo J, Martinez M (1999) Effects of glucose and phenylalanine upon 2,4,6-trichlorophenol degradation by Pseudomonas paucimobilis S37 cells in a no-growth state. Microbios 100:73–82

    CAS  Google Scholar 

  • Bateman A, Birney E, Cerruti L, Durbin R, Etwiller L, Eddy SR (2002) The Pfam protein families database. Nucleic Acids Res 30:276–280

    CAS  Google Scholar 

  • Belchik SM, Xun L (2008) Functions of flavin reductase and quinone reductase in 2,4,6-trichlorophenol degradation by Cupriavidus necator JMP134. J Bacteriol 190:1615–1619

    CAS  Google Scholar 

  • Belchik SM, Schaeffer SM, Hasenoehrl S, Xun L (2010) A beta-barrel outer membrane protein facilitates cellular uptake of polychlorophenols in Cupriavidus necator. Biodegradation 21:431–439

    CAS  Google Scholar 

  • Birchmore RJ, Meneley JC (1979) Prochloraz-a new foliar fungicide with potential in a wide range of crops. Phytopathology 69:1022–1026

    Google Scholar 

  • Bisaillon A, Beaudet R, Lépine F, Déziel E, Villemur R (2010) Identification and characterization of a novel CprA reductive dehalogenase specific to highly chlorinated phenols from Desulfitobacterium hafniense strain PCP-1. Appl Environ Microbiol 76(22):7536–7540. doi:10.1128/AEM.01362-10

    CAS  Google Scholar 

  • Bock C, Kroppenstedt RM, Schmidt U, Diekmann H (1996) Degradation of prochloraz and 2,4,6-trichlorophenol by environmental bacterial strains. Appl Microbiol Biotech 45:257–262

    CAS  Google Scholar 

  • Bouchard B, Beaudet R, Villemur R, McSween G, Lepine G, Bisaillon JG (1996) Isolation and characterization of Desulfitobacterium frappieri sp. nov., an anaerobic bacterium which reductively dechlorinates pentachlorophenol to 3-chlorophenol. Int J Syst Bacteriol 46:1010–1015

    CAS  Google Scholar 

  • Boyer A, Page-BeLanger R, Saucier M, Villemur R, Lépine F, Juteau P, Beaudet R (2003) Purification, cloning and sequencing of an enzyme mediating the reductive dechlorination of 2,4,6-trichlorophenol from Desulfitobacterium frappieri PCP-1. Biochem J 373:297–303

    CAS  Google Scholar 

  • Briglia M, Eggen RI, Van Elsas DJ, De Vos WM (1994) Phylogenetic evidence for transfer of pentachlorophenol-mineralizing Rhodococcus chlorophenolicus PCP-I(T) to the genus Mycobacterium. Int J Syst Bacteriol 44:494–498

    CAS  Google Scholar 

  • Briglia M, Rainey FA, Stackebrandt E, Schraa G, Salkinoja-Salonen MS (1996) Rhodococcus percolatus sp. nov., a bacterium degrading 2,4,6-trichlorophenol. Int J Syst Bacteriol 46:23–30

    CAS  Google Scholar 

  • Cai M, Xun L (2002) Organization and regulation of pentachlorophenol-degrading genes in Sphingobium chlorophenolicum ATCC 39723. J Bacteriol 184:4672–4680

    CAS  Google Scholar 

  • Chanama S, Crawford RL (1997) Mutational analysis of pcpA and its role in pentachlorophenol degradation by Sphingomonas (Flavobacterium) chlorophenolica ATCC 39723. Appl Environ Microbiol 63:4833–4838

    CAS  Google Scholar 

  • Chu JP, Kirsch EJ (1972) Metabolism of pentachlorophenol by an axenic bacterial culture. Appl Microbiol 23:1033–1035

    CAS  Google Scholar 

  • Clement P, Matus V, Cardenas L, Gonzalez B (1995) Degradation of trichlorophenols by Alcaligenes eutrophus JMP134. FEMS Microbiol Lett 127:51–55

    CAS  Google Scholar 

  • Cline RE, Hill RHJ, Phillips DL, Needham LL (1989) Pentachlorophenol measurements in body fluids of people in log homes and workplaces. Arch Environ Contam Toxicol 18:475–481

    CAS  Google Scholar 

  • Coque JJ, Alvarez-Rodriguez ML, Larriba G (2003) Characterization of an inducible chlorophenol O-methyltransferase from Trichoderma longibrachiatum involved in the formation of chloroanisoles and determination of its role in cork taint of wines. Appl Environ Microbiol 69:5089–5095

    CAS  Google Scholar 

  • Crawford RL, Ederer MM (1999) Phylogeny of Sphingomonas species that degrade pentachlorophenol. J Ind Microbiol Biotechnol 23:320–325

    CAS  Google Scholar 

  • Crawford RL, Mohn WW (1985) Microbial removal of pentachlorophenol from soil using a Flavobacterium. Enzyme Microb Technol 7:617–620

    CAS  Google Scholar 

  • Crosby DG (1981) Environmental chemistry of pentachlorophenol. Pure Appl Chem 53:1052–1080

    Google Scholar 

  • Cunarro J, Weiner MW (1975) Mechanism of action of agents which uncouple oxidative phosphorylation: direct correlation between proton-carrying and respiratory-releasing properties using rat liver mitochondria. Biochim Biophys Acta 387:234–240

    CAS  Google Scholar 

  • Dahlhaus M, Almstadt E, Henschke P, Luttgert S, Appel KE (1995) Induction of 8-hydroxy-2-deoxyguanosine and single-strand breaks in DNA of V79 cells by tetrachloro-p-hydroquinone. Mutat Res 329:29–36

    CAS  Google Scholar 

  • Dai M, Rogers JB, Warner JR, Copley SD (2003) A previously unrecognized step in pentachlorophenol degradation in Sphingobium chlorophenolicum is catalyzed by tetrachlorobenzoquinone reductase (PcpD). J Bacteriol 185:302–310

    CAS  Google Scholar 

  • Delaney SM, Mavrodi DV, Bonsall RF, Thomashow LS (2001) phzO, a gene for biosynthesis of 2-hydroxylated phenazine compounds in Pseudomonas aureofaciens 30–84. J Bacteriol 183:318–327

    CAS  Google Scholar 

  • Dixon DP, Davis BG, Edwards R (2002) Functional divergence in the glutathione transferase superfamily in plants. Identification of two classes with putative functions in redox homeostasis in Arabidopsis thaliana. J Biol Chem 277:30859–30869

    CAS  Google Scholar 

  • Duncan CG, Deverall FJ (1964) Degradation of wood preservatives by fungi. Appl Microbiol 12:57–62

    CAS  Google Scholar 

  • Ederer MM, Crawford RL, Herwig RP, Orser CS (1997) PCP degradation is mediated by closely related strains of the genus Sphingomonas. Mol Ecol 6:39–49

    CAS  Google Scholar 

  • Entsch B, Ballou DP, Massey V (1976) Flavin-oxygen derivatives involved in hydroxylation by p-hydroxybenzoate hydroxylase. J Biol Chem 251:2550–2563

    CAS  Google Scholar 

  • EPA (2006) Toxic Release Inventory: Public Data Release. http://www.epa.gov/tri/tridata/tri06/

  • Escher BI, Snozzi M, Schwarzenbach P (1996) Uptake, speciation, and uncoupling activity of substituted phenols in energy transducing membranes. Environ Sci Technol 30:3071–3079

    CAS  Google Scholar 

  • Firestone D (1978) The 2,3,7,8-trtrachlorodibenzo-para-dioxin problem: a review. Stockholm Ecol Bulletin 27:39–52

    Google Scholar 

  • Galán B, Díaz E, Prieto MA, García JL (2000) Functional analysis of the small component of the 4-hydroxyphenylacetate 3-monnooxygenase of Escherichia coli W: a prototype of a new Flavin: NAD(P)H reductase subfamily. J Bacteriol 182:627–636

    Google Scholar 

  • Garcera A, Barreto L, Piedrafita L, Tamarit J, Herrero E (2006) Saccharomyces cerevisiae cells have three Omega class glutathione S-transferases acting as 1-Cys thiol transferases. Biochem J 398:187–196

    CAS  Google Scholar 

  • Gisi MR, Xun L (2003) Characterization of chlorophenol 4-monooxygenase (TftD) and NADH:flavin adenine dinucleotide oxidoreductase (TftC) of Burkholderia cepacia AC1100. J Bacteriol 185:2786–2792

    CAS  Google Scholar 

  • Golovleva LA, Pertsova RN, Evtushenko LI, Baskunov BP (1990) Degradation of 2,4,5-trichlorophenoxyacetic acid by a Nocardioides simplex culture. Biodegradation 1:263–271

    CAS  Google Scholar 

  • Golovleva LA, Zaborina O, Pertsova R, Baskunov B, Schurukhin Y, Kuzmin S (1992) Degradation of polychlorinated phenols by Streptomyces rochei 303. Biodegradation 2:201–208

    CAS  Google Scholar 

  • Habash M, Chu BC, Trevors JT, Lee H (2009) Mutational study of the role of N-terminal amino acid residues in tetrachlorohydroquinone reductive dehalogenase from Sphingomonas sp. UG30. Res Microbiol 60:553–559

    Google Scholar 

  • Haggblom MM, Nohynek LJ, Palleroni NJ, Kronqvist K, Nurmiaho-Lassila EL, Salkinoja-Salonen MS (1994) Transfer of polychlorophenol-degrading Rhodococcus chlorophenolicus to the genus Mycobacterium as Mycobacterium chlorophenolicum comb nov. Int J Syst Bacteriol 44:485–493

    CAS  Google Scholar 

  • Haigler BE, Suen WC, Spain JC (1996) Purification and sequence analysis of 4-methyl-5-nitrocatechol oxygenase from Burkholderia sp strain DNT. J Bacteriol 178:6019–6024

    CAS  Google Scholar 

  • Harwood CS, Parales RE (1996) The ß-ketoadipate pathway and the biology of self-identity. Annu Rev Microbiol 50:553–590

    CAS  Google Scholar 

  • Haugland RA, Sangodkar UM, Sferra PR, Chakrabarty AM (1991) Cloning and characterization of a chromosomal DNA region required for growth on 2,4,5-T by Pseudomonas cepacia AC1100. Gene 100:65–73

    CAS  Google Scholar 

  • Hoekstra E, de Weerd H, de Leer E, Brinkman U (1999) Natural formation of chlorinated phenols, dibenzo-p-dioxins, and dibenzofurans in soil of a douglas fir forest. Environ Sci Technol 33:2543–2549

    CAS  Google Scholar 

  • Huang Y, Xun R, Chen G, Xun L (2008) The maintenance role of a glutathionyl-hydroquinone lyase (PcpF) in pentachlorophenol degradation by Sphingobium chlorophenolicum ATCC 39723. J Bacteriol 190:7595–7600

    CAS  Google Scholar 

  • Hubner A, Hendrickson W (1997) A fusion promoter created by a new insertion sequence, IS1490, activates transcription of 2,4,5-trichlorophenoxyacetic acid catabolic genes in Burkholderia cepacia AC1100. J Bacteriol 179:2717–2723

    CAS  Google Scholar 

  • Hubner A, Danganan CE, Xun L, Chakrabarty AM, Hendrickson W (1998) Genes for 2,4,5-trichlorophenoxyacetic acid metabolism in Burkholderia cepacia AC1100: characterization of the tftC and tftD genes and locations of the tft operons on multiple replicons. Appl Environ Microbiol 64:2086–2093

    CAS  Google Scholar 

  • Husain M, Entsch B, Ballou DP, Massey V, Chapman PJ (1980) Fluoride elimination from substrates in hydroxylation reaction catalyzed by p-hydroxybenzoate hydroxylase. J Biol Chem 255:4189–4197

    CAS  Google Scholar 

  • Ide A, Niki Y, Sakamoto F, Watanabe I, Wantanabe H (1972) Decomposition of pentachlorophenol in paddy soil. Agric Biol Chem 36:1937–1944

    CAS  Google Scholar 

  • Imai R, Nagata Y, Fukuda M, Takagi M, Yano K (1991) Molecular cloning of a Pseudomonas paucimobilis gene encoding a 17-kilodalton polypeptide that eliminates HCl molecules from gamma-hexachlorocyclohexane. J Bacteriol 173:6811–6819

    CAS  Google Scholar 

  • Inouye S (1994) NAD(P)H-flavin oxidoreductase from the bioluminescent bacterium, Vibrio fischeri ATCCis a flavoprotein. FEBS Lett 347:163–168

    CAS  Google Scholar 

  • Kaiser J (2000) Just how bad is dioxin? Science 288:1941–1944

    CAS  Google Scholar 

  • Karns JS, Duttagupta S, Chakrabarty AM (1983) Regulation of 2,4,5-trichlorophenoxyacetic acid and chlorophenol metabolism in Pseudomonas cepacia AC1100. Appl Environ Microbiol 46:1182–1186

    CAS  Google Scholar 

  • Kaschabek SR, Kuhn B, Muller D, Schmidt E, Reineke W (2002) Degradation of aromatics and chloroaromatics by Pseudomonas sp. strain B13: purification and characterization of 3-oxoadipate:succinyl-coenzyme A (CoA) transferase and 3-oxoadipyl-CoA thiolase. J Bacteriol 184:207–215

    CAS  Google Scholar 

  • Kellogg ST, Chatterjee DK, Chakrabarty AM (1981) Plasmid-assisted molecular breeding: new technique for enhanced biodegradation of persistent toxic chemicals. Science 214:1133–1135

    CAS  Google Scholar 

  • Kilbane JJ, Chatterjee DK, Karns JS, Kellogg ST, Chakrabarty AM (1982) Biodegradation of 2,4,5-trichlorophenoxyacetic acid by a pure culture of Pseudomonas cepacia. Appl Environ Microbiol 44:72–78

    CAS  Google Scholar 

  • Kirchner U, Westphal AH, Muller R, van Berkel WJ (2003) Phenol hydroxylase from Bacillus thermoglucosidasius A7, a two-protein component monooxygenase with a dual role for FAD. J Biol Chem 278:47545–47553

    CAS  Google Scholar 

  • Kiyohara H, Hatta T, Ogawa Y, Kakuda T, Yokoyama H, Takizawa N (1992) Isolation of Pseudomonas pickettii strains that degrade 2,4,6-trichlorophenol and their dechlorination of chlorophenols. Appl Environ Microbiol 58:1276–1283

    CAS  Google Scholar 

  • Lamar RT, Dietrich DM (1990) In situ depletion of pentachlorophenol from contaminated soil by Phanerochaete spp. Appl Environ Microbiol 56:3093–3100

    CAS  Google Scholar 

  • Lamar RT, Dietrich DM (1992) Use of lignin-degrading fungi in the disposal of pentachlorophenol-treated wood. J Ind Microbiol 9:181–191

    CAS  Google Scholar 

  • Lamar RT, Evans JW (1993) Solid-phase treatment of a pentachlorophenol-contaminated soil using lignin-degradting fungi. Environ Sci Technol 27:2566–2571

    CAS  Google Scholar 

  • Lange CC, Schneider BJ, Orser CS (1996) Verification of the role of PCP 4-monooxygenase in chlorine elimination from pentachlorophenol by Flavobacterium sp. strain ATCC 39723. Biochem Biophys Res Commun 219:146–149

    CAS  Google Scholar 

  • Lei B, Liu M, Huang S, Tu SC (1994) Vibrio harveyi NADPH-flavin oxidoreductase: cloning, sequencing and overexpression of the gene and purification and characterization of the cloned enzyme. J Bacteriol 176:3552–3558

    CAS  Google Scholar 

  • Li DY, Eberspacher J, Wagner B, Kuntzer J, Lingens F (1991) Degradation of 2,4,6-trichlorophenol by Azotobacter sp. strain GP1. Appl Environ Microbiol 57:1920–1928

    CAS  Google Scholar 

  • Louie TM, Webster CM, Xun L (2002) Genetic and biochemical characterization of a novel 2,4,6-trichlorophenol degradation pathway in Ralstonia eutropha JMP134. J Bacteriol 184:3492–3500

    CAS  Google Scholar 

  • Lü Z, Min H, Wu S, Ruan A (2003) Phylogenetic and degradation characterization of Burkholderia cepacia WZ1 degrading herbicide quinclorac. J Environ Sci Health B 38:771–782

    Google Scholar 

  • Lyr H (1963) Enzymatische detoxifikation chlorierter phenole. Phytopath Zeitschr 47:73–83

    CAS  Google Scholar 

  • Mannisto MK, Tiirola MA, Salkinoja-Salonen MS, Kulomaa MS, Puhakka JA (1999) Diversity of chlorophenol-degrading bacteria isolated from contaminated boreal groundwater. Arch Microbiol 171:189–197

    CAS  Google Scholar 

  • Marco A, Cuesta A, Pedrola L, Palau F, Marín I (2004) Evolutionary and structural analyses of GDAP1, involved in Charcot-Marie-Tooth disease, characterize a novel class of glutathione transferase-related genes. Mol Biol Evol 21:176–187

    CAS  Google Scholar 

  • Matus V, Sanchez MA, Martinez M, Gonzalez B (2003) Efficient degradation of 2,4,6-Trichlorophenol requires a set of catabolic genes related to tcp genes from Ralstonia eutropha JMP134(pJP4). Appl Environ Microbiol 69:7108–7115

    CAS  Google Scholar 

  • Merz V, Weith W (1872) On the characteristics of pentachlorophenol (in German). Ber Dtsch Chem Ges 5:458–463

    Google Scholar 

  • Middaugh DP, Thomas RL, Lantz SE, Heard CS, Mueller JG (1994) Field-scale testing of a hyperfiltration unit for removal of creosote and pentachlorophenol from ground water: chemical and biological assessment. Arch Environ Contam Toxicol 26:309–319

    CAS  Google Scholar 

  • Miethling R, Karlson U (1996) Accelerated mineralization of pentachlorophenol in soil upon inoculation with Mycobacterium chlorophenolicum PCP1 and Sphingomonas chlorophenolica RA2. Appl Environ Microbiol 62:4361–4366

    CAS  Google Scholar 

  • Mikesell MD, Boyd SA (1986) Complete reductive dechlorination and mineralization of pentachlorophenol by anaerobic microorganisms. Appl Environ Microbiol 52:861–865

    CAS  Google Scholar 

  • Nohynek LJ, Nurmiaho-Lassila EL, Suhonen EL, Busse HJ, Mohammadi M, Hantula J (1996) Description of chlorophenol-degrading Pseudomonas sp. strains KF1T, KF3, and NKF1 as a new species of the genus Sphingomonas, Sphingomonas subarctica sp. nov. Int J Syst Bacteriol 46:1042–1055

    CAS  Google Scholar 

  • Ohtsubo Y, Miyauchi K, Kanda K, Hatta T, Kiyohara H, Senda T (1999) PcpA, which is involved in the degradation of pentachlorophenol in Sphingomonas chlorophenolica ATCC39723, is a novel type of ring-cleavage dioxygenase. FEBS Lett 459:395–598

    CAS  Google Scholar 

  • Orser CS, Lange CC (1994) Molecular analysis of pentachlorophenol degradation. Biodegradation 5:277–288

    CAS  Google Scholar 

  • Orser CS, Dutton J, Lange C, Jablonski P, Xun L, Hargis M (1993a) Characterization of a Flavobacterium glutathione S-transferase gene involved in reductive dechlorination. J Bacteriol 175:2640–2644

    CAS  Google Scholar 

  • Orser CS, Lange CC, Xun L, Zahrt TC, Schneider BJ (1993b) Cloning, sequence analysis, and expression of the Flavobacterium pentachlorophenol-4-monooxygenase gene in Escherichia coli. J Bacteriol 175:411–416

    CAS  Google Scholar 

  • Padilla L, Matus V, Zenteno P, Gonzalez B (2000) Degradation of 2,4,6-trichlorophenol via chlorohydroxyquinol in Ralstonia eutropha JMP134 and JMP222. J Basic Microbiol 40:243–249

    CAS  Google Scholar 

  • Proudfoot AT (2003) Pentachlorophenol poisoning. Toxicol Rev 22:3–11

    CAS  Google Scholar 

  • Puhakka JA, Herwig RP, Koro PM, Wolfe GV, Ferguson JF (1995) Biodegradation of chlorophenols by mixed and pure cultures from a fluidized-bed reactor. Appl Microbiol Biotechnol 42:951–957

    CAS  Google Scholar 

  • Raymond KN, Dertz EA, Kim SS (2003) Enterobactin: an archetype for microbial iron transport. Proc Natl Acad Sci USA 100:3584–3588

    CAS  Google Scholar 

  • Reddy GV, Gold MH (2000) Degradation of pentachlorophenol by Phanerochaete chrysosporium: intermediates and reactions involved. Microbiology 146:405–413

    CAS  Google Scholar 

  • Reddy GV, Gold MH (2001) Purification and characterization of glutathione conjugate reductase: a component of the tetrachlorohydroquinone reductive dehalogenase system from Phanerochaete chrysosporium. Arch Biochem Biophys 391:271–277

    CAS  Google Scholar 

  • Reddy GV, Gelpke MD, Gold MH (1998) Degradation of 2,4,6-trichlorophenol by Phanerochaete chrysosporium: involvement of reductive dechlorination. J Bacteriol 180:5159–5164

    CAS  Google Scholar 

  • Rice JF, Menn FM, Hay AG, Sanseverino J, Sayler GS (2005) Natural selection for 2,4,5-trichlorophenoxyacetic acid mineralizing bacteria in agent orange contaminated soil. Biodegradation 16:501–512

    CAS  Google Scholar 

  • Saber DL, Crawford RL (1985) Isolation and characterization of Flavobacterium strains that degrade pentachlorophenol. Appl Environ Microbiol 50:1512–1518

    CAS  Google Scholar 

  • Sánchez MA, González B (2007) Genetic characterization of 2, 4, 6-trichlorophenol degradation in Cupriavidus necator JMP134. Appl Environ Microbiol 73:2769–2776

    Google Scholar 

  • Sangodkar UM, Chapman PJ, Chakrabarty AM (1988) Cloning, physical mapping and expression of chromosomal genes specifying degradation of the herbicide 2,4,5-T by Pseudomonas cepacia AC1100. Gene 71:267–277

    CAS  Google Scholar 

  • Sharma A, Thakur IS, Dureja P (2009) Enrichment, isolation and characterization of pentachlorophenol degrading bacterium Acinetobacter sp. ISTPCP-3 from effluent discharge site. Biodegradation 5:643–650

    Google Scholar 

  • Steiert JG, Crawford RL (1986) Catabolism of pentachlorophenol by a Flavobacterium sp. Biochem Biophys Res Commun 141:825–830

    CAS  Google Scholar 

  • Steiert JG, Pignatello JJ, Crawford RL (1987) Degradation of chlorinated phenols by a pentachlorophenol-degrading bacterium. Appl Environ Microbiol 53:907–910

    CAS  Google Scholar 

  • Stintzi A, Cornelis P, Hohnadel D, Meyer JM, Dean C, Poole K (1996) Novel pyoverdine biosynthesis gene(s) of Pseudomonas aeruginosa PAO. Microbiology 142:1181–1190

    CAS  Google Scholar 

  • Suckling J, Mansson P-H, Mann J, Morgan J (1999) Corky wines linked to cellars in France. In: Wine Spectator. In February 28, 1999 Issue

    Google Scholar 

  • Takeuchi M, Hamana K, Hiraishi A (2001) Proposal of the genus Sphingomonas sensu stricto and three new genera, Sphingobium, Novosphingobium and Sphingopyxis, on the basis of phylogenetic and chemotaxonomic analyses. Int J Syst Evol Microbiol 51:1405–1417

    CAS  Google Scholar 

  • Takizawa N, Yokoyama H, Yanagihara K, Hatta T, Kiyohara H (1995) A locus of Pseudomonas pickettii DTP0602, had, that encodes 2,4,6-trichlorophenol-4-dechlorinase with hydroxylase activity, and hydroxylation of various chlorophenols by the enzyme. J Ferment Bioeng 80:318–326

    CAS  Google Scholar 

  • Tiirola MA, Wang H, Paulin L, Kulomaa MS (2002) Evidence for natural horizontal transfer of the pcpB gene in the evolution of polychlorophenol-degrading sphingomonads. Appl Environ Microbiol 68:4495–4501

    CAS  Google Scholar 

  • Tiirola MA, Busse HJ, Kämpfer P, Männistö MK (2005) Novosphingobium lentum sp nov., a psychrotolerant bacterium from a polychlorophenol bioremediation process. Int J Syst Evol Microbiol 55:583–588

    CAS  Google Scholar 

  • Trantirek L, Hynkova K, Nagata Y, Murzin A, Ansorgová A, Sklenár V, Damborský J (2001) Reaction mechanism and stereochemistry of gamma-hexachlorocyclohexane dehydrochlorinase LinA. J Biol Chem 276:7734–7740

    CAS  Google Scholar 

  • Uhl S, Schmid P, Schlatter C (1986) Pharmacokinetics of pentachlorophenol in man. Arch Toxicol 58:182–186

    CAS  Google Scholar 

  • Uotila JS, Kitunen VH, Coote T, Saastamoinen T, Salkinoja-Salonen MS, Apajalahti JH (1995) Metabolism of halohydroquinones in Rhodococcus chlorophenolicus PCP-1. Biodegradation 6:119–126

    CAS  Google Scholar 

  • Wackett LP, Kwart LD, Gibson DT (1988) Benzylic monooxygenation catalyzed by toluene dioxygenase from Pseudomonas putida. Biochemistry 27:1360–1367

    CAS  Google Scholar 

  • Wang CC, Lee CM, Lu CJ, Chuang MS, Huang CZ (2000) Biodegradation of 2,4,6-trichlorophenol in the presence of primary substrate by immobilized pure culture bacteria. Chemosphere 41:1873–1879

    CAS  Google Scholar 

  • Wang YJ, Lee CC, Chang WC, Liou HB, Ho YS (2001) Oxidative stress and liver toxicity in rats and human hepatoma cell line induced by pentachlorophenol and its major metabolite tetrachlorohydroquinone. Toxicol Lett 122:157–169

    CAS  Google Scholar 

  • Warner JR, Lawson SL, Copley SD (2005) A mechanistic investigation of the thiol-disulfide exchange step in the reductive dehalogenation catalyzed by tetrachlorohydroquinone dehalogenase. Biochemistry 44:10360–10368

    CAS  Google Scholar 

  • Whitbread AK, Masoumi A, Tetlow N, Schmuck E, Coggan M, Board PG (2005) Characterization of the omega class of glutathione transferases. Methods Enzymol 401:78–99

    CAS  Google Scholar 

  • WHO (1986) Occupational exposures to chlorophenols. IARC Monographs on the Evaluation of the Carcinogenic Risk of Chemicals to Humans vol 41. IARC, Lyon, pp 319–356

    Google Scholar 

  • WHO (1987) Environmental Health Criteria 71, Pentachlorophenol. World Health Organization, Geneva

    Google Scholar 

  • Wieser M, Wagner B, Eberspacher J, Lingens F (1997) Purification and characterization of 2,4,6-trichlorophenol-4-monooxygenase, a dehalogenating enzyme from Azotobacter sp. strain GP1. J Bacteriol 179:202–208

    CAS  Google Scholar 

  • Xu L, Resing K, Lawson SL, Babbitt PC, Copley SD (1999) Evidence that pcpA encodes 2,6-dichlorohydroquinone dioxygenase, the ring cleavage enzyme required for pentachlorophenol degradation in Sphingomonas chlorophenolica strain ATCC 39723. Biochemistry 38:7659–7669

    CAS  Google Scholar 

  • Xun L (1996) Purification and characterization of chlorophenol 4-monooxygenase from Burkholderia cepacia AC1100. J Bacteriol 178:2645–2649

    CAS  Google Scholar 

  • Xun L, Orser CS (1991a) Purification, properties of pentachlorophenol hydroxylase, a flavoprotein from Flavobacterium sp. strain ATCC 39723. J Bacteriol 173:4447–4453

    CAS  Google Scholar 

  • Xun L, Orser CS (1991b) Purification of a Flavobacterium pentachlorophenol-induced periplasmic protein (PcpA) and nucleotide sequence of the corresponding gene (pcpA). J Bacteriol 173:2920–2926

    CAS  Google Scholar 

  • Xun L, Orser CS (1991c) Biodegradation of triiodophenol by cell-free extracts of a pentachlorophenol-degrading Flavobacterium sp. Biochem Biophys Res Commun 174:43–48

    CAS  Google Scholar 

  • Xun L, Sandvik ER (2000) Characterization of 4-hydroxyphenylacetate 3-hydroxylase (HpaB) of Escherichia coli as a reduced flavin adenine dinucleotide-utilizing monooxygenase. Appl Environ Microbiol 66:481–486

    CAS  Google Scholar 

  • Xun L, Wagon K (1995) Purification and properties of 2,4,5-trichlorophenoxyacetate oxygenase from Pseudomonas cepacia AC1100. Appl Environ Microbiol 61:3499–3502

    CAS  Google Scholar 

  • Xun L, Webster CM (2004) A monooxygenase catalyzes sequential dechlorinations of 2,4,6-trichlorophenol by oxidative and hydrolytic reactions. J Biol Chem 279:6696–6700

    CAS  Google Scholar 

  • Xun L, Topp E, Orser CS (1992a) Purification and characterization of a tetrachloro-p-hydroquinone reductive dehalogenase from a Flavobacterium sp. J Bacteriol 174:8003–8007

    CAS  Google Scholar 

  • Xun L, Topp E, Orser CS (1992b) Glutathione is the reducing agent for the reductive dehalogenation of tetrachloro-p-hydroquinone by extracts from a Flavobacterium sp. Biochem Biophy Res Comm 182:361–366

    CAS  Google Scholar 

  • Xun L, Topp E, Orser CS (1992c) Diverse substrate range of a Flavobacterium pentachlorophenol hydroxylase and reaction stoichiometries. J Bacteriol 174:2898–2902

    CAS  Google Scholar 

  • Xun L, Topp E, Orser CS (1992d) Confirmation of oxidative dehalogenation of pentachlorophenol by a Flavobacterium pentochlorophenol hydroxylase. J Bacteriol 174:5745–5747

    CAS  Google Scholar 

  • Xun L, Bohuslavek J, Cai M (1999) Characterization of 2,6-dichloro-p-hydroquinone 1,2-dioxygenase (PcpA) of Sphingomonas chlorophenolica ATCC 39723. Biochem Biophy Res Comm 266:322–325

    CAS  Google Scholar 

  • Xun L, Belchik SM, Xun R, Huang Y, Zhou H, Sanchez E (2010) S-Glutathionyl-(chloro)hydroquinone reductases: a novel class of glutathione transferases. Biochem J 428:419–427

    CAS  Google Scholar 

  • Zaborina O, Latus M, Eberspacher J, Golovleva LA, Lingens F (1995) Purification and characterization of 6-chlorohydroxyquinol 1,2-dioxygenase from Streptomyces rochei 303: comparison with an analogous enzyme from Azotobacter sp. strain GP1. J Bacteriol 177:229–234

    CAS  Google Scholar 

  • Zaborina O, Daubaras DL, Zago A, Xun L, Saido K, Klem T (1998) Novel pathway for conversion of chlorohydroxyquinol to maleylacetate in Burkholderia cepacia AC1100. J Bacteriol 180:4667–4675

    CAS  Google Scholar 

Download references

Acknowledgments

I began working on polychlorophenol degradation as a postdoctoral scientist with Dr. Cindy S. Orser at University of Idaho and have continued the research as a faculty member at Washington State University. Pacific Northwest National Laboratory provided me with lab space and equipment from 1992 to 1997. National Science Foundation has supported the research with grants MCB-921873, MCB-9722970, MCB-0323167 and MCB-1021148. My graduate students, postdoctoral scientists, and coworkers have significantly contributed to the progress summarized here. We have collaborated with Dr. A. M. Chakrabarty’s group at University of Illinois at Chicago on 2,4,5-T degradation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luying Xun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Xun, L. (2012). Microbial Degradation of Polychlorophenols. In: Singh, S. (eds) Microbial Degradation of Xenobiotics. Environmental Science and Engineering(). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23789-8_1

Download citation

Publish with us

Policies and ethics