Learning the Parameters of Probabilistic Logic Programs from Interpretations

  • Bernd Gutmann
  • Ingo Thon
  • Luc De Raedt
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6911)


ProbLog is a recently introduced probabilistic extension of the logic programming language Prolog, in which facts can be annotated with the probability that they hold. The advantage of this probabilistic language is that it naturally expresses a generative process over interpretations using a declarative model. Interpretations are relational descriptions or possible worlds. This paper introduces a novel parameter estimation algorithm LFI-ProbLog for learning ProbLog programs from partial interpretations. The algorithm is essentially a Soft-EM algorithm. It constructs a propositional logic formula for each interpretation that is used to estimate the marginals of the probabilistic parameters. The LFI-ProbLog algorithm has been experimentally evaluated on a number of data sets that justifies the approach and shows its effectiveness.


Logic Program Kullback Leibler Boolean Formula Binary Decision Diagram Ground Atom 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bellodi, E., Riguzzi, F.: EM over binary decision diagrams for probabilistic logic programs. Tech. Rep. CS-2011-01, Università di Ferrara, Italy (2011)Google Scholar
  2. 2.
    Bryant, R.E.: Graph-based algorithms for boolean function manipulation. IEEE Trans. Computers 35(8), 677–691 (1986)CrossRefzbMATHGoogle Scholar
  3. 3.
    Craven, M., Slattery, S.: Relational learning with statistical predicate invention: Better models for hypertext. Machine Learning 43(1/2), 97–119 (2001)CrossRefzbMATHGoogle Scholar
  4. 4.
    Cussens, J.: Parameter estimation in stochastic logic programs. Machine Learning 44(3), 245–271 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    De Raedt, L., Frasconi, P., Kersting, K., Muggleton, S. (eds.): Probabilistic Inductive Logic Programming — Theory and Applications. LNCS (LNAI), vol. 4911. Springer, Heidelberg (2008)zbMATHGoogle Scholar
  6. 6.
    De Raedt, L., Kimmig, A., Toivonen, H.: Problog: A probabilistic Prolog and its application in link discovery. In: Veloso, M. (ed.) IJCAI, pp. 2462–2467 (2007)Google Scholar
  7. 7.
    De Raedt, L.: Logical and Relational Learning. Springer, Heidelberg (2008)CrossRefzbMATHGoogle Scholar
  8. 8.
    De Raedt, L., Kersting, K.: Probabilistic inductive logic programming. In: Ben-David, S., Case, J., Maruoka, A. (eds.) ALT 2004. LNCS (LNAI), vol. 3244, pp. 19–36. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  9. 9.
    Domingos, P., Lowd, D.: Markov Logic: An Interface Layer for Artificial Intelligence. Synthesis Lectures on Artificial Intelligence and Machine Learning. Morgan & Claypool Publishers, San Francisco (2009)zbMATHGoogle Scholar
  10. 10.
    Fierens, D., Van den Broeck, G., Thon, I., Gutmann, B., De Raedt, L.: Inference in probabilistic logic programs using weighted cnf’s. In: The 27th Conference on Uncertainty in Artificial Intelligence, UAI 2011 (to appear, 2011)Google Scholar
  11. 11.
    Getoor, L., Friedman, N., Koller, D., Pfeffer, A.: Learning probabilistic relational models. In: Džeroski, S., Lavrač, N. (eds.) Relational Data Mining, pp. 307–335. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  12. 12.
    Getoor, L., Taskar, B. (eds.): An Introduction to Statistical Relational Learning. MIT Press, Cambridge (2007)zbMATHGoogle Scholar
  13. 13.
    Gutmann, B., Kimmig, A., De Raedt, L., Kersting, K.: Parameter learning in probabilistic databases: A least squares approach. In: Daelemans, W., Goethals, B., Morik, K. (eds.) ECML PKDD 2008, Part I. LNCS (LNAI), vol. 5211, pp. 473–488. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  14. 14.
    Ishihata, M., Kameya, Y., Sato, T., Minato, S.: Propositionalizing the EM algorithm by BDDs. In: ILP (2008)Google Scholar
  15. 15.
    Kersting, K., Raedt, L.D.: Bayesian logic programming: theory and tool. In: Getoor, L., Taskar, B. (eds) [12]Google Scholar
  16. 16.
    Meert, W., Struyf, J., Blockeel, H.: Learning ground cp-logic theories by leveraging bayesian network learning techniques. Fundam. Inform. 89(1), 131–160 (2008)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Muggleton, S.: Stochastic logic programs. In: De Raedt, L. (ed.) Advances in Inductive Logic Programming. Frontiers in Artificial Intelligence and Applications, vol. 32. IOS Press, Amsterdam (1996)Google Scholar
  18. 18.
    Poole, D.: The independent choice logic and beyond. In: De Raedt, L. et al [5],Google Scholar
  19. 19.
    Richardson, M., Domingos, P.: Markov logic networks. Machine Learning 62, 107–136 (2006)CrossRefGoogle Scholar
  20. 20.
    Riguzzi, F.: Learning ground problog programs from interpretations. In: Proceedings of the 6th Workshop on Multi-Relational Data Mining, MRDM 2007 (2007)Google Scholar
  21. 21.
    Sato, T.: A statistical learning method for logic programs with distribution semantics. In: Sterling, L. (ed.) Proceedings of the 12th International Conference on Logic Programming, pp. 715–729. MIT Press, Cambridge (1995)Google Scholar
  22. 22.
    Sato, T., Kameya, Y.: Parameter learning of logic programs for symbolic-statistical modeling. Journal of Artificial Intelligence Research 15, 391–454 (2001)MathSciNetzbMATHGoogle Scholar
  23. 23.
    Thon, I., Landwehr, N., De Raedt, L.: A simple model for sequences of relational state descriptions. In: Daelemans, W., Goethals, B., Morik, K. (eds.) ECML PKDD 2008, Part I. LNCS (LNAI), vol. 5211, pp. 506–521. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  24. 24.
    Vennekens, J., Denecker, M., Bruynooghe, M.: Representing causal information about a probabilistic process. In: Fisher, M., van der Hoek, W., Konev, B., Lisitsa, A. (eds.) JELIA 2006. LNCS (LNAI), vol. 4160, pp. 452–464. Springer, Heidelberg (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Bernd Gutmann
    • 1
  • Ingo Thon
    • 1
  • Luc De Raedt
    • 1
  1. 1.Department of Computer ScienceKatholieke Universiteit LeuvenHeverleeBelgium

Personalised recommendations