Advertisement

Active Learning of Model Parameters for Influence Maximization

  • Tianyu Cao
  • Xindong Wu
  • Tony Xiaohua Hu
  • Song Wang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6911)

Abstract

Previous research efforts on the influence maximization problem assume that the network model parameters are known beforehand. However, this is rarely true in real world networks. This paper deals with the situation when the network information diffusion parameters are unknown. To this end, we firstly examine the parameter sensitivity of a popular diffusion model in influence maximization, i.e., the linear threshold model, to motivate the necessity of learning the unknown model parameters. Experiments show that the influence maximization problem is sensitive to the model parameters under the linear threshold model. In the sequel, we formally define the problem of finding the model parameters for influence maximization as an active learning problem under the linear threshold model. We then propose a weighted sampling algorithm to solve this active learning problem. Extensive experimental evaluations on five popular network datasets demonstrate that the proposed weighted sampling algorithm outperforms pure random sampling in terms of both model accuracy and the proposed objective function.

Keywords

Influence maximization Social network analysis Active Learning 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cao, T., Wu, X., Wang, S., Hu, X.: Oasnet: an optimal allocation approach to influence maximization in modular social networks. In: SAC, pp. 1088–1094 (2010)Google Scholar
  2. 2.
    Chen, W., Wang, C., Wang, Y.: Scalable influence maximization for prevalent viral marketing in large-scale social networks. In: KDD, pp. 1029–1038 (2010)Google Scholar
  3. 3.
    Chen, W., Wang, Y., Yang, S.: Efficient influence maximization in social networks. In: KDD, pp. 199–208 (2009)Google Scholar
  4. 4.
    Chen, W., Yuan, Y., Zhang, L.: Scalable influence maximization in social networks under the linear threshold model. In: ICDM, pp. 88–97 (2010)Google Scholar
  5. 5.
    Domingos, P., Richardson, M.: Mining the network value of customers. In: KDD, pp. 57–66 (2001)Google Scholar
  6. 6.
    Gomez-Rodriguez, M., Leskovec, J., Krause, A.: Inferring networks of diffusion and influence. In: KDD, pp. 1019–1028 (2010)Google Scholar
  7. 7.
    Goyal, A., Bonchi, F., Lakshmanan, L.V.S.: Learning influence probabilities in social networks. In: WSDM, pp. 241–250 (2010)Google Scholar
  8. 8.
    Granovetter, M.: Threshold models of collective behavior. The American Journal of Sociology 83(6), 1420–1443 (1978)CrossRefGoogle Scholar
  9. 9.
    Kempe, D., Kleinberg, J.M., Tardos, É.: Maximizing the spread of influence through a social network. In: KDD, pp. 137–146 (2003)Google Scholar
  10. 10.
    Kimura, M., Saito, K., Nakano, R.: Extracting influential nodes for information diffusion on a social network. In: AAAI, pp. 1371–1376 (2007)Google Scholar
  11. 11.
    Richardson, M., Domingos, P.: Mining knowledge-sharing sites for viral marketing. In: KDD, pp. 61–70 (2002)Google Scholar
  12. 12.
    Saito, K., Kimura, M., Ohara, K., Motoda, H.: Selecting information diffusion models over social networks for behavioral analysis. In: Balcázar, J.L., Bonchi, F., Gionis, A., Sebag, M. (eds.) ECML PKDD 2010. LNCS, vol. 6323, pp. 180–195. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  13. 13.
    Saito, K., Nakano, R., Kimura, M.: Prediction of information diffusion probabilities for independent cascade model. In: KES (3), pp. 67–75 (2008)Google Scholar
  14. 14.
    Wang, Y., Cong, G., Song, G., Xie, K.: Community-based greedy algorithm for mining top-k influential nodes in mobile social networks. In: KDD, pp. 1039–1048 (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Tianyu Cao
    • 1
  • Xindong Wu
    • 1
  • Tony Xiaohua Hu
    • 2
  • Song Wang
    • 1
  1. 1.Department of Computer ScienceUniversity of VermontUSA
  2. 2.College of Information Science and TechnologyDrexel UniversityUSA

Personalised recommendations