Advertisement

Constrained Laplacian Score for Semi-supervised Feature Selection

  • Khalid Benabdeslem
  • Mohammed Hindawi
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6911)

Abstract

In this paper, we address the problem of semi-supervised feature selection from high-dimensional data. It aims to select the most discriminative and informative features for data analysis. This is a recent addressed challenge in feature selection research when dealing with small labeled data sampled with large unlabeled data in the same set. We present a filter based approach by constraining the known Laplacian score. We evaluate the relevance of a feature according to its locality preserving and constraints preserving ability. The problem is then presented in the spectral graph theory framework with a study of the complexity of the proposed algorithm. Finally, experimental results will be provided for validating our proposal in comparison with other known feature selection methods.

Keywords

Feature selection Laplacian score Constraints 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Jain, A., Zongker, D.: Feature selection: Evaluation, application, and small sample performance. IEEE Transactions on Pattern Analysis and Machine Intelligence 19(2), 153–158 (1997)CrossRefGoogle Scholar
  2. 2.
    Frank, A., Asuncion, A.: Uci machine learning repository. Technical report, University of California (2010)Google Scholar
  3. 3.
    Guyon, I., Elisseeff, A.: An introduction to variable and feature selection. Journal of Machine Learning Research (3), 1157–1182 (2003)Google Scholar
  4. 4.
    Yu, L., Liu, H.: Feature selection for high-dimensional data: a fast correlation-based filter solution. In: Proceedings of the Twentieth International Conference on Machine Learning (2003)Google Scholar
  5. 5.
    Kohavi, R., John, G.: Wrappers for feature subset selection. Artificial Intelligence 97(12), 273–324 (1997)CrossRefzbMATHGoogle Scholar
  6. 6.
    Roweis, S.T., Saul, L.K.: Nonlinear dimensionality reduction by local linear embedding. Science (290), 2323–2326 (2000)Google Scholar
  7. 7.
    Dash, M., Liu, H.: Feature selection for classification. Intelligent Data Analysis 1(3), 131–156 (2000)Google Scholar
  8. 8.
    Dy, J., Brodley., C.E.: Feature selection for unsupervised learning. Journal of Machine Learning Research (5), 845–889 (2004)Google Scholar
  9. 9.
    Chapelle, O., Scholkopf, B., Zien, A.: Semi-supervised learning. The MIT Press, Cambridge (2006)CrossRefGoogle Scholar
  10. 10.
    Zhao, Z., Liu, H.: Semi-supervised feature selection via spectral analysis. In: Proceedings of SIAM International Conference on Data Mining (SDM), pp. 641–646 (2007)Google Scholar
  11. 11.
    Chung, F.: Spectral graph theory. AMS, Providence (1997)zbMATHGoogle Scholar
  12. 12.
    Ren, J., Qiu, Z., Fan, W., Cheng, H., Yu, P.S.: Forward semi-supervised feature selection. In: Washio, T., Suzuki, E., Ting, K.M., Inokuchi, A. (eds.) PAKDD 2008. LNCS (LNAI), vol. 5012, pp. 970–976. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  13. 13.
    Basu, S., Davidson, I., Wagstaff, K.: Constrained clustering: Advances in algorithms, theory and applications. Chapman and Hall/CRC Data Mining and Knowledge Discovery Series (2008)Google Scholar
  14. 14.
    Xing, E., Ng, A., Jordan, M., Russel, S.: Distance metric learning, with application to clustering with side-information. In: Advances in Neural Information Processing Systems, vol. 15, pp. 505–512 (2003)Google Scholar
  15. 15.
    Bar-Hillel, A., Hertz, T., Shental, N., Weinshall, D.: Learning a mahalanobis metric from equivalence constraints. Journal of Machine Learning Research 6, 937–965 (2005)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Zhang, D., Zhou, Z., Chen, S.: Semi-supervised dimensionality reduction. In: Proceedings of SIAM International Conference on Data Mining, SDM (2007)Google Scholar
  17. 17.
    Zhang, D., Chen, S., Zhou, Z.: Constraint score: A new filter method for feature selection with pairwise constraints. Pattern Recognition 41(5), 1440–1451 (2008)CrossRefzbMATHGoogle Scholar
  18. 18.
    Sun, D., Zhan, D.: Bagging constraint score for feature selection with pairwise constraints. Pattern Recognition 43(6), 2106–2118 (2010)CrossRefzbMATHGoogle Scholar
  19. 19.
    Kalakech, M., Biela, P., Macaire, L., Hamad, D.: Constraint scores for semi-supervised feature selection: A comparative study. Pattern Recognition Letters 32(5), 656–665 (2011)CrossRefGoogle Scholar
  20. 20.
    He, X., Cai, D., Niyogi, P.: Laplacian score for feature selection. In: Advances in Neural Information Processing Systems, vol. 17 (2005)Google Scholar
  21. 21.
    Robnik-Sikonja, M., Kononenko, I.: Theoretical and empirical analysis of relief and relieff. Machine Learning 53, 23–69 (2003)CrossRefzbMATHGoogle Scholar
  22. 22.
    Zhao, Z., Liu, H.: Spectral feature selection for supervised and unsupervised learning. In: Proceedings of the Twenty Fourth International Conference on Machine Learning (2007)Google Scholar
  23. 23.
    Kohonen, T.: Self Organizing Map. Springer, Berlin (2001)CrossRefzbMATHGoogle Scholar
  24. 24.
    Golub, T., Slonim, D., Tamayo, P., Huard, C., Gaasenbeek, M., Mesirov, J., Coller, H., Loh, M., Downing, L., Caligiuri, M., Bloomfield, C., Lander, E.: Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring. Science 15 286(5439), 531–537 (1999)CrossRefGoogle Scholar
  25. 25.
    Alon, U., Barkai, N., Notterman, D., Gish, K., Ybarra, S., Mack, D., Levine, A.: Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays. Natl. Acad. Sci. 96(12), 6745–6750 (1999)CrossRefGoogle Scholar
  26. 26.
    Bishop, C.: Neural Networks for Pattern Recognition. Oxford University Press, Oxford (1995)zbMATHGoogle Scholar
  27. 27.
    Duda, R., Hart, P., Stork, D.: Pattern Classification. Wiley-Interscience, Hoboken (2000)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Khalid Benabdeslem
    • 1
  • Mohammed Hindawi
    • 1
  1. 1.GAMA, Lab.University of Lyon1VilleurbanneFrance

Personalised recommendations