Advertisement

Constrained Logistic Regression for Discriminative Pattern Mining

  • Rajul Anand
  • Chandan K. Reddy
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6911)

Abstract

Analyzing differences in multivariate datasets is a challenging problem. This topic was earlier studied by finding changes in the distribution differences either in the form of patterns representing conjunction of attribute value pairs or univariate statistical analysis for each attribute in order to highlight the differences. All such methods focus only on change in attributes in some form and do not implicitly consider the class labels associated with the data. In this paper, we pose the difference in distribution in a supervised scenario where the change in the data distribution is measured in terms of the change in the corresponding classification boundary. We propose a new constrained logistic regression model to measure such a difference between multivariate data distributions based on the predictive models induced on them. Using our constrained models, we measure the difference in the data distributions using the changes in the classification boundary of these models. We demonstrate the advantages of the proposed work over other methods available in the literature using both synthetic and real-world datasets.

Keywords

Logistic regression constrained learning  discriminative pattern mining change detection 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Agrawal, R., Imielinski, T., Swami, A.: Database mining: A performance perspective. IEEE Trans. Knowledge Data Engrg. 5(6), 914–925 (1993)CrossRefGoogle Scholar
  2. 2.
    Asuncion, A., Newman, D.: UCI machine learning repository (2007), http://archive.ics.uci.edu/ml/
  3. 3.
    Basu, S., Davidson, I., Wagstaff, K.L.: Constrained Clustering: Advances in Algorithms, Theory, and Applications. CRC Press, Boca Raton (2008)zbMATHGoogle Scholar
  4. 4.
    Bay, S.D., Pazzani, M.J.: Detecting group differences: Mining contrast sets. Data Mining and Knowledge Discovery 5(3), 213–246 (2001)CrossRefzbMATHGoogle Scholar
  5. 5.
    Caruana, R.: Multitask learning. Machine Learning 28(1), 41–75 (1997)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Coleman, T.F., Li, Y.: An interior trust region approach for nonlinear minimizations subject to bounds. Technical Report TR 93-1342 (1993)Google Scholar
  7. 7.
    Dai, W., Yang, Q., Xue, G., Yu, Y.: Boosting for transfer learning. In: ICML 2007: Proceedings of the 24th International Conference on Machine Learning, pp. 193–200 (2007)Google Scholar
  8. 8.
    Dong, G., Li, J.: Efficient mining of emerging patterns: Discovering trends and differences. In: Proceedings of the Fifth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 43–52 (1999)Google Scholar
  9. 9.
    Efron, B., Tibshirani, R.J.: An Introduction to the Bootstrap. Chapman and Hall, London (1993)CrossRefzbMATHGoogle Scholar
  10. 10.
    Fang, G., Pandey, G., Wang, W., Gupta, M., Steinbach, M., Kumar, V.: Mining low-support discriminative patterns from dense and high-dimensional data. IEEE Transactions on Knowledge and Data Engineering (2011)Google Scholar
  11. 11.
    Gamberger, D., Lavrac, N.: Expert-guided subgroup discovery: methodology and application. Journal of Artificial Intelligence Research 17(1), 501–527 (2002)zbMATHGoogle Scholar
  12. 12.
    Ganti, V., Gehrke, J., Ramakrishnan, R., Loh, W.: A framework for measuring differences in data characteristics. J. Comput. Syst. Sci. 64(3), 542–578 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd edn. Springer, Heidelberg (2009)CrossRefzbMATHGoogle Scholar
  14. 14.
    Hilderman, R.J., Peckham, T.: A statistically sound alternative approach to mining contrast sets. In: Proceedings of the 4th Australasian Data Mining Conference (AusDM), pp. 157–172 (2005)Google Scholar
  15. 15.
    Kullback, S., Leibler, R.A.: On information and sufficiency. Ann. Math. Stat. 22(1), 79–86 (1951)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Lavrač, N., Kavšek, B., Flach, P., Todorovski, L.: Subgroup discovery with cn2-sd. Journal of Machine Learning Research 5, 153–188 (2004)MathSciNetGoogle Scholar
  17. 17.
    Liu, B., Hsu, W., Han, H.S., Xia, Y.: Mining changes for real-life applications. In: Data Warehousing and Knowledge Discovery, Second International Conference (DaWaK) Proceedings, pp. 337–346 (2000)Google Scholar
  18. 18.
    Massey, F.J.: The kolmogorov-smirnov test for goodness of fit. Journal of the American Statistical Association 46(253), 68–78 (1951)CrossRefzbMATHGoogle Scholar
  19. 19.
    Novak, P.K., Lavrac, N., Webb, G.I.: Supervised descriptive rule discovery: A unifying survey of contrast set, emerging pattern and subgroup mining. Journal of Machine Learning Research 10, 377–403 (2009)zbMATHGoogle Scholar
  20. 20.
    Ntoutsi, I., Kalousis, A., Theodoridis, Y.: A general framework for estimating similarity of datasets and decision trees: exploring semantic similarity of decision trees. In: SIAM International Conference on Data Mining (SDM), pp. 810–821 (2008)Google Scholar
  21. 21.
    Odibat, O., Reddy, C.K., Giroux, C.N.: Differential biclustering for gene expression analysis. In: Proceedings of the First ACM International Conference on Bioinformatics and Computational Biology (BCB), pp. 275–284 (2010)Google Scholar
  22. 22.
    Palit, I., Reddy, C.K., Schwartz, K.L.: Differential predictive modeling for racial disparities in breast cancer. In: IEEE International Conference on Bioinformatics and Biomedicine (BIBM), pp. 239–245 (2009)Google Scholar
  23. 23.
    Pan, S.J., Yang, Q.: A survey on transfer learning. IEEE Transactions on Knowledge and Data Engineering 22(10), 1345–1359 (2010)CrossRefGoogle Scholar
  24. 24.
    Pekerskaya, I., Pei, J., Wang, K.: Mining changing regions from access-constrained snapshots: a cluster-embedded decision tree approach. Journal of Intelligent Information Systems 27(3), 215–242 (2006)CrossRefGoogle Scholar
  25. 25.
    Wang, H., Pei, J.: A random method for quantifying changing distributions in data streams. In: Jorge, A.M., Torgo, L., Brazdil, P.B., Camacho, R., Gama, J. (eds.) PKDD 2005. LNCS (LNAI), vol. 3721, pp. 684–691. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  26. 26.
    Wang, K., Zhou, S., Fu, A.W.C., Yu, J.X.: Mining changes of classification by correspondence tracing. In: Proceedings of the Third SIAM International Conference on Data Mining (SDM), pp. 95–106 (2003)Google Scholar
  27. 27.
    Webb, G.I., Butler, S., Newlands, D.: On detecting differences between groups. In: Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD), pp. 256–265 (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Rajul Anand
    • 1
  • Chandan K. Reddy
    • 1
  1. 1.Department of Computer ScienceWayne State UniversityDetroitUSA

Personalised recommendations