Skip to main content

Photon Management: Photonic Crystals, Photosynthesis and Semiconductor–Enzyme Junctions

  • Chapter
  • First Online:
Photons in Natural and Life Sciences

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 157))

  • 1292 Accesses

Abstract

In the preceding Chap. 4, high energy photons were applied for device fabrication and, also, for the analysis of (photo)electrochemically modified silicon. In addition, the use of soft X-rays in the energetic analysis of metallo-proteins and in materials development was emphasized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. E. Schrödinger, An undulatory theory of the mechanics of atoms and molecules, Phys. Rev. 28, 1049–1070 (1926)

    Article  ADS  MATH  Google Scholar 

  2. J.C. Slater, An augmented plane wave method for the periodic potential problem, Phys. Rev. 92, 603–608 (1953)

    Article  ADS  MATH  Google Scholar 

  3. N.W. Ashcroft, N.D. Mermin, Solid State Physics (Holt, Rinehart, and Winston, New York, 1976)

    Google Scholar 

  4. T. Vo-Dinh, H.-N. Wang, J. Scaffaldi, Plasmonic nanoprobes for SERS biosensing and bioimaging, J. Biophoton. 3, 89–102 (2010)

    Article  Google Scholar 

  5. S.Y. Lin et al., A three-dimensional photonic crystal operating at infrared wavelengths, Nature 394, 251–253 (1998)

    Article  ADS  Google Scholar 

  6. E. Yablonovitch, Inhibited spontaneous emission in solid state physics and electronics, Phys. Rev. Lett. 58, 2059–2062 (1987)

    Article  ADS  Google Scholar 

  7. V. Lehmann, The physics of macropore formation in low-doped n-type silicon, J. Electrochem. Soc. 140, 2836–2843 (1993)

    Article  Google Scholar 

  8. U. Grüning, V. Lehmann, Two-dimensional photonic crystal based on macroporous silicon, Thin Solid Films 276, 151–154 (1996)

    Article  ADS  Google Scholar 

  9. J.D. Joannopoulos, S.G. Johnson, J.N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton University Press, Princeton, NJ, 2008)

    MATH  Google Scholar 

  10. R.D. Meade, A.M. Rappe, K.D. Brommer, J.D. Joannopoulos, O.L. Alerhand, J. Jin, The Finite-Element Method in Electromagnetics (Wiley, New York, 1993)

    Google Scholar 

  11. K.M. Ho, C.T. Chan, C.M. Soukoulis, Existence of a photonic gap in periodic dielectric structures, Phys. Rev. Lett. 65, 3152–3155 (1990)

    Article  ADS  Google Scholar 

  12. J.S. Foresi et al., Photonic-band gap microcavities in optical waveguides, Nature 390, 143–145 (1997)

    Article  ADS  Google Scholar 

  13. J. Kerr, A new relation between electricity and light: dielectric media birefringent, Philos. Mag. 50, 446–458 (1875)

    Google Scholar 

  14. A. Hasegawa, in Optical Solitons in Fibers, Springer Tracts in Modern Physics, vol. 116 (Springer, Heidelberg, 1989)

    Google Scholar 

  15. N. Aközbek, S. John, Optical solitary waves in two- and three-dimensional nonlinear photonic band-gap structures, Phys. Rev. E 57, 2287–2319 (1998)

    Article  ADS  Google Scholar 

  16. H.S. Sözüer, J.W. Haus, R. Inguva, Photonic bands – convergence problems with the plane wave method, Phys. Rev. B 45, 13962–13972 (1992)

    Article  ADS  Google Scholar 

  17. J.E.G.J. Wijnhoven, W.L. Vos, Preparation of photonic crystals made of air spheres in titania, Science 281, 802–804 (1998)

    Article  ADS  Google Scholar 

  18. J.B. Pendry, A.J. Holden, W.J. Stewart, I. Youngs, Extremely low frequency plasmons in metallic mesostructures, Phys. Rev. Lett. 76, 4773–4776 (1996)

    Article  ADS  Google Scholar 

  19. S.J. Smith, E.M. Purcell, Visible light from localized surface charges moving across a grating, Phys. Rev. 92, 1069(1953)

    Article  ADS  Google Scholar 

  20. X. Artru, G.B. Yodh, G. Mennessier, Practical theory of the multilayered transition radiation detector, Phys. Rev. D 12, 1289–1306 (1975)

    Article  ADS  Google Scholar 

  21. F. J. Garcia de Abajo, A.G. Pattantyus-Abraham, N. Zabala, A. Rivacoba, M.O. Wolf, P.M. Echenique, Cherenkov effect as a probe of photonic nanostructures, Phys. Rev. Lett. 91, 143902(2003)

    Article  ADS  Google Scholar 

  22. D. Ugarte, C. Colliex, P. Trebbia, Surface- and interface-plasmon modes on small semiconducting spheres, Phys. Rev. B 45, 4332–4334 (1992)

    Article  ADS  Google Scholar 

  23. A.G. Koutsioubas, N. Spiliopoulos, D. Anastassopoulos, A.A. Vradis, G.D. Priftis, Nanoporous alumina enhanced surface plasmon resonance sensors, J. Appl. Phys. 103, 1–6 (2008)

    Article  Google Scholar 

  24. A. Ben-Shem, F. Frolow, N. Nelson, Crystal structure of plant photosystem I, Nature 426, 630–635 (2003)

    Article  ADS  Google Scholar 

  25. M. Rögner, E.J. Boekema, J. Barber, How does photosystem 2 split water? The structural basis of efficient energy conversion, Trends Biochem. Sci. 21, 44–49 (1996)

    Article  Google Scholar 

  26. J. Standfuss, A.C. Terwisscha van Scheltinga1, M. Lamborghini, W. Kühlbrandt, Mechanisms of photoprotection and nonphotochemical quenching in pea light harvesting complex at 2.5A resolution, EMBO J. 24, 919–928 (2005)

    Google Scholar 

  27. B. Kok, B. Forbush, M. McGloin, Cooperation of charges in photosynthetic O2 evolution. 1. A linear 4-step mechanism, Photochem. Photobiol. 11, 457–475 (1970)

    Google Scholar 

  28. T.M. Bricker, A time-resolved vibrational spectroscopy glimpse into the oxygen-evolving complex of photosynthesis, PNAS 103, 7205–7206 (2006)

    Article  ADS  Google Scholar 

  29. I.J. Hewitt, J.-K. Tang, N.T. Madhu, R. Clérac, G. Buth, C.E. Ansona, A.K. Powell, A series of new structural models for the OEC in photosystem II, Chem. Commun. 25, 2650–2652 (2006)

    Article  Google Scholar 

  30. W. Lubitz, E.J. Reijerse, J. Messinger, Solar water-splitting into H2 and O2: design principles of photosystem II and hydrogenases, Energy Environ. Sci. 1, 15–31 (2008)

    Article  Google Scholar 

  31. R. Hill, F. Bendall, Function of the two cytochrome components in chloroplasts: a working hypothesis, Nature 186, 136–137 (1960)

    Article  ADS  Google Scholar 

  32. M. Calvin, The photosynthetic cycle, Bull. Soc. Chim. Biol. 38, 1233–1244 (1956)

    Google Scholar 

  33. X. Hu, A. Damjanovic, T. Ritz, K. Schulten, Architecture and mechanism of the light-harvesting apparatus of purple bacteria, Proc. Natl. Acad. Sci. USA 95, 5935–5941 (1998)

    Article  ADS  Google Scholar 

  34. Th.v. Förster, Intermolecular energy migration and fluorescence, Ann. d. Phys. 2, 55–75 (1948)

    Google Scholar 

  35. G.D. Scholes, Long range resonance energy transfer in molecular systems, Annu. Rev. Phys. Chem. 54, 57–87 (2003)

    Article  ADS  Google Scholar 

  36. B. Schuler, E.A. Lipman, P.J. Steinbach, M. Kumke, W.A. Eaton, Polyproline and the “spectroscopic ruler” revisited with single molecule fluorescence, Proc. Natl. Acad. Sci. USA 102, 2754–2759 (2005)

    Article  ADS  Google Scholar 

  37. X. Hu, T. Ritz, A. Damjanovic, F. Autenrieth, K. Schulten, Photosynthetic apparatus of purple bacteria, Q. Rev. Biophys. 35, 1–62 (2002)

    Article  Google Scholar 

  38. J.R. Lakowicz, Principles of Fluorescence Spectroscopy (Springer, New York, 2006)

    Book  Google Scholar 

  39. P.A.M. Dirac, The Principles of Quantum Mechanics (Oxford, Clarendon, 1958), p. 180

    MATH  Google Scholar 

  40. L. Stryer, Fluorescence energy transfer as a spectroscopic ruler, Annu. Rev. Biochem. 47, 819–846 (1978)

    Article  Google Scholar 

  41. J. Zheng, FRET and its application as a molecular ruler, in Handbook of Modern Biophysics, Biomedical Applications of Biophysics, vol. 3 (Humana Press, Riverside, New Jersey, 2010), pp. 119–136

    Google Scholar 

  42. S. Jang, M.D. Newton, R.J. Silbey, Multichromophoric Förster resonance energy transfer, Phys. Rev. Lett. 92, 1–4 (2004)

    Google Scholar 

  43. G.R. Fleming, G.D. Scholes, Quantum mechanics for plants, Nature 431, 256–257 (2004)

    Article  ADS  Google Scholar 

  44. G. Jutz, A. Böker, Bionanoparticles as functional macromolecular building blocks – A new class of nanomaterials, Polymer 52, 211–232 (2011)

    Article  Google Scholar 

  45. M. Grätzel, Dye-sensitized solar cells, J. Photochem. Photobiol. C: Photochem. Rev. 4, 145–153 (2003)

    Article  Google Scholar 

  46. N. Robertson, Optimizing dyes for dye-sensitized solar cells, Angew. Chem. Int. Ed. 45, 2338–2345 (2006)

    Article  Google Scholar 

  47. D.L. Dexter, A theory of sensitized luminescence in solids, J. Chem. Phys. 21, 836–851 (1953)

    Article  ADS  Google Scholar 

  48. B.P. Paulson, J.R. Miller, W.-X. Gan, G. Closs, Superexchange and sequential mechanisms in charge transfer with a mediating state between the donor and acceptor, J. Am. Chem. Soc. 127, 4860–4868 (2005)

    Article  Google Scholar 

  49. H. Lederer, O. Schatz, R. May, H. Crespi, J.-L. Darlix, S. F.J. LeGrice, H. Heumann, Domain structure of the human immunodeficiency virus reverse transcriptase, EMBO J. 11, 1131–1139 (1992)

    Google Scholar 

  50. M. Tarek, G.J. Martyna, D.J. Tobias, Amplitudes and frequencies of protein dynamics: analysis of discrepancies between neutron scattering and molecular dynamic simulations, J. Am. Chem. Soc. 122, 10450–10451 (2000)

    Article  Google Scholar 

  51. D. Gust, T.A. Moore, A.L. Moore, Mimicking photosynthetic solar energy transduction, Acc. Chem. Res. 34, 40–48 (2001)

    Article  Google Scholar 

  52. H. Jungblut, S.A. Campbell, M. Giersig, D.J. Müller, H.J. Lewerenz, STM observations of biomolecules on layered materials, Farad. Disc. 94, 183–198 (1992)

    Article  ADS  Google Scholar 

  53. H.J. Lewerenz, Enzyme-semiconductor interactions: routes from fundamental aspects to photoactive devices, Phys. Stat. Sol (b) 245, 1884–1898 (2008)

    Article  ADS  Google Scholar 

  54. H.J. Lewerenz, H. Jungblut, S.A. Campbell, D.J. Müller, Direct observation of reverse transcriptases by STM, AIDS Res. Hum. Retroviruses 8, 1663–1667 (1992)

    Article  Google Scholar 

  55. B.V. Derjarguin, L. Landau, Acta Physicochimica (URSS) 14, 633 (1941)

    Google Scholar 

  56. E.J. Verwey, J.T.G. Overbeek, “Theory of theStability of Lyophobic Colloids” (Elsevier, Amsterdam, 1948)

    Google Scholar 

  57. H.J. Lewerenz, Surface states and Fermi level pinning at semiconductor/electrolyte junctions, J. Electroanal. Chem. 356, 121–143 (1993)

    Article  Google Scholar 

  58. S.A. Campbell, J.R. Smith, H. Jungblut, H.J. Lewerenz, Protein imaging on a semiconducting substrate: a scanning tunnelling microscopy investigation, J. Electroanal. Chem. 599, 313–322 (2007)

    Article  Google Scholar 

  59. H.J. Lewerenz, K. Skorupska, J.R. Smith, S.A. Campbell, Surface chemistry and electronics of semiconductor-nanosystem junctions II: enzyme immobilization, charge transport aspects and scanning probe microscopy imaging, J. Sol. State Electrochem. 13 195–203 (2009)

    Article  Google Scholar 

  60. R. Guckenberger, M. Heim, G. Cevec, H.F. Knapp, W. Wiegräbe, A. Hillebrand, Scanning tunnelling microscopy of insulators and biological specimens based on lateral conductivity of ultrathin water films, Science 266, 1538–1540 (1994)

    Article  ADS  Google Scholar 

  61. R. Guckenberger, M. Heim, STM on wet insulators: Electrochemistry or tunnelling? Response to a technical comment, Science 270, 1851–1852 (1995)

    Google Scholar 

  62. S.M. Sze, Semiconductor Devices (Wiley, New York, 1980)

    Google Scholar 

  63. K. Maturova, R.A. Janssen, M. Kemerink, Connecting scanning tunneling spectroscopy to device performance for polymer:fullerene organic solar cells, ACS Nano 4, 1385–1392 (2010)

    Article  Google Scholar 

  64. H.-W. Jochims, M. Schwell, J.-L. Chotin, M. Clemino, F. Dulieu, H. Baumgärtel, S. Leach, Photoion mass spectrometry of five amino acids in the 6–22 eV photon energy range, Chem. Phys. 298, 279–297 (2004)

    Article  Google Scholar 

  65. R.N. Jones, H.J. Greech, The ultraviolet absorption spectra of protein solutions, JOSA 33, 209–217 (1943)

    Article  ADS  Google Scholar 

  66. P. Facci, D. Alliata, L. Andolfi, B. Schnyder, R. Kötz, Formation and characterization of protein monolyers on oxygen-exposing surfaces by multiple-step self-chemisorption, Surf. Sci. 504, 282–292 (2002)

    Article  ADS  Google Scholar 

  67. T. Koslowski, Localized and extended electronic eigenstates in proteins, J. Chem. Phys. 110, 12233–12239 (1999)

    Article  ADS  Google Scholar 

  68. D.M. Kolb, W. Boeck, K.-M. Ho, S.H. Liu, Observation of surface states on Ag(1 0 0) by infrared and visible electroreflectance spectroscopy, Phys. Rev. Lett. 47, 1921–1924 (1981)

    Article  ADS  Google Scholar 

  69. H. Jungblut, J. Jakubowicz, S. Schweizer, H. J. Lewerenz, Mechanism of initial structure formation on highly doped n-Si(111), J. Electroanal. Chem. 527, 41–46 (2002)

    Article  Google Scholar 

  70. S.K. Pal, J. Peon, A.H. Zewail, Biological water at the protein surface: dynamical salvation probed directly with femtosecond resolution, Proc. Natl. Acad. Sci. USA 99, 1763–1768 (2002)

    Article  ADS  Google Scholar 

  71. E.W. Schlag, S.-Y. Sheu, D.-Y. Yang, H.L. Selzle, S.H. Lin, Charge conductivity in peptides; dynamic simulations of a bifunctional model supporting experimental data, Proc. Natl. Acad. Sci. USA 97, 1068–1072 (2000)

    Article  ADS  Google Scholar 

  72. X. Shi, F.H. Long, H. Lu, K.B. Eisenthal, Femtosecond electron solvation kinetics in water, J. Phys. Chem. 100, 11903–11906 (1996)

    Article  Google Scholar 

  73. P. Kambhampati, D.H. Song, T.W. Kee, P.F. Barbara, Solvation dynamics of the hydrated electron depends on its initial degree of electron delocalization, J. Phys. Chem. A 106, 2374–2378 (2002)

    Article  Google Scholar 

  74. R.A. Marcus, On the theory of electron-transfer reactions VI. Unified treatment for homogeneous and electrode reactions, J. Chem. Phys. 43, 679–702 (1965)

    Google Scholar 

  75. H. Gerischer, Über den Ablauf von Redoxreaktionen an Metallen und an Halbleitern. I Allgemeines zum Elektronenübergang zwischen einem Festkörper und einem Redoxelektrolyten, Z. Phys. Chem. N. F. 26, 223–247 (1960)

    Google Scholar 

  76. H. Gerischer, Über den Ablauf von Redoxreaktionen an Metallen und an Halbleitern. III. Halbleiterelektroden, Z. Phys. Chem. N. F. 27, 48–79 (1961)

    Google Scholar 

  77. M. Zielinski, M. Samoc, An investigation of the Poole-Frenkel effect by thermally stimulated current technique, J. Phys. D: Appl. Phys. 10, L105–L107 (1977)

    Article  ADS  Google Scholar 

  78. T.W. Ebbesen, H.J. Lezec, H. Hiura, J.W. Bennett, H.F. Ghaemi, T. Thio, Electrical conductivity of individual carbon nanotubes, Nature 382, 54–56 (1996)

    Article  ADS  Google Scholar 

  79. B. O’Reagan, M. Grätzel, A low-cost, high efficiency solar cell based on dye-sensitized colloidal TiO2 films, Nature 353, 737–740 (1991)

    Article  Google Scholar 

  80. B.A. Gregg, Excitonic solar cells, J. Phys. Chem. B 107, 4688–4698 (2003)

    Article  Google Scholar 

  81. J.M. Kron et al., Nanocrystalline dye-sensitized solar cells having maximum performance, Prog. Photovolt: Res. Appl. 15, 1–18 (2007)

    Article  MathSciNet  Google Scholar 

  82. S. Licht, B. Wang, S. Mukerji, T. Soga, M. Umeno, H. Tributsch, Efficient solar water splitting, exemplified by RuO2-catalyzed AlGaAs/Si photoelectrolysis, J. Phys. Chem. B 104, 8920–8924 (2000)

    Article  Google Scholar 

  83. I. Vurgaftman, J.R. Meyer, Band parameters for nitrogen-containing semiconductors, J. Appl. Phys. 94, 3675–3696 (2003)

    Article  ADS  Google Scholar 

  84. K. Skorupska, T. Vo-Dinh, H.J. Lewerenz, Scanning probe characterization of enzymes deposited onto step-bunched silicon nanostructures, Phys. Scripta 79, 1–4 (2009)

    Article  Google Scholar 

  85. K. Skorupska, Ch. Pettenkofer, S. Sadewasser, F. Streicher, W. Haiss, H.J. Lewerenz, Electronic and morphological properties of the electrochemically prepared step bunched silicon (111) surface, Phys. Stat. Sol. B 248, 361–369 (2011)

    Article  ADS  Google Scholar 

  86. K. Skorupska, H.J. Lewerenz, P. Ugarte-Berzal, A. Rutkowska, P.J. Kulesza, unpublished results

    Google Scholar 

  87. K. Skorupska, P. Ugarte-Berzal, M. Lunlow, H.J. Lewerenz, unpublished results

    Google Scholar 

  88. R.A. Grimme, C.E. Lubner, D.A. Bryant, J.H. Golbeck, Photosystem I/molecular wire/metal nanoparticle bioconjugates for the photocatalytic production of H2, J. Am. Chem. Soc. 130, 6308–6309 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans-Joachim Lewerenz .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lewerenz, HJ. (2012). Photon Management: Photonic Crystals, Photosynthesis and Semiconductor–Enzyme Junctions. In: Photons in Natural and Life Sciences. Springer Series in Optical Sciences, vol 157. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23749-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-23749-2_5

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-23748-5

  • Online ISBN: 978-3-642-23749-2

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics