Skip to main content

High-Energy Photons for Surface/Interface Analysis and Materials Science

  • Chapter
  • First Online:
Photons in Natural and Life Sciences

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 157))

  • 1266 Accesses

Abstract

In this chapter, a selection of examples is presented in which some of the light sources that were introduced in Chap. 2 are employed for a specific application. The chapter begins with the introduction to synchrotron radiation and related experimentation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S.S. Hasnain, J.R. Helliwell, H. Kamitsubo, Fifty years of synchrotron radiation, J. Synchrotron Radiat. 4, 315 (1997) (editorial)

    Google Scholar 

  2. H. Gerischer, Charge transfer processes at the semiconductor–electrolyte interface in connection with problems of catalysis, Surf. Sci. 18, 97–122 (1969)

    Article  ADS  Google Scholar 

  3. S.R. Morrison, Electrochemistry at Semiconductor and Oxidized Metal Electrodes (Plenum, New York, 1980)

    Book  Google Scholar 

  4. K. Skorupska, Ch. Pettenkofer, S. Sadewasser, F. Streicher, W. Haiss, H.J. Lewerenz, Electronic and morphological properties of the electrochemically prepared step bunched Silicon (1 1 1) surface, Phys. Stat. Sol. (b) 248, 361–369 (2011)

    Article  ADS  Google Scholar 

  5. W.T. Grubb, Catalysis, electrocatalysis and hydrocarbon fuel cells, Nature 198, 1183(1963)

    Article  Google Scholar 

  6. D. Teschner, R. Schlögl et al., High-pressure X-ray photoelectron spectroscopy of palladium model hydrogenation catalysts. Part 1: Effect of gas ambient and temperature, J. Catal. 230, 186–194 (2005)

    Google Scholar 

  7. G. Scherb, J. Zegenhagen, K. Uosaki et al., In-situ X-ray standing-wave analysis of electrodeposited Cu monolayers on GaAs(0 0 1), Phys. Rev. B 58, 10800–10805 (1998)

    Article  ADS  Google Scholar 

  8. T. Stempel, A. Munoz, K. Skorupska, M. Lublow, M. Kanis, H.J. Lewerenz, Surface chemistry and nanotopography of step-bunched silicon surfaces: in-system SRPES and SPM investigations, Electrochem. Soc. Trans. 19, 403–407 (2009)

    Google Scholar 

  9. D. Teschner, A. Knop-Gericke, R. Schlögl et al., The roles of subsurface carbon and hydrogen in palladium-catalyzed alkyne hydrogenation, Science 320, 86–89 (2008)

    Article  ADS  Google Scholar 

  10. H.J. Lewerenz, Surface scientific aspects in semiconductor electrochemistry, Chem. Soc. Rev. 26, 239–246 (1997)

    Article  Google Scholar 

  11. K. Skorupska, M. Lublow, M. Kanis, H. Jungblut, H.J. Lewerenz, On the surface chemistry of silicon under reducing conditions: an SRPES investigation, Electrochem. Commun. 7, 1077–1081 (2005)

    Article  Google Scholar 

  12. S.P. Garcia, H. Bao, M.A. Hines, Etchant anisotropy controls the step bunching anisotropy in KOH etching of silicon, Phys. Rev. Lett. 93, 166102 (2004)

    Article  ADS  Google Scholar 

  13. M. Lublow, H.J. Lewerenz, Analysis of variable scale surface roughness on Si(1 1 1): a comparative Brewster angle, ellipsometry and atomic force microscopy investigation, Trans. Inst. Metal Finish. 83, 238–247 (2005)

    Article  Google Scholar 

  14. P. Perfetti, C. Quaresima, C. Coluzza, C. Fortunato, G. Margaritondo, Dipole-induced changes of the band discontinuities at the SiO2–Si interface, Phys. Rev. Lett. 57, 2065–2068 (1986)

    Article  ADS  Google Scholar 

  15. W. Kohn, Density functional theory: fundamentals and applications, in Highlights of Condensed Matter Theory, ed. by F. Bassani, F. Fumi, M.P. Tosi (North Holland, Amsterdam, 1985), pp. 1–15

    Google Scholar 

  16. H.J. Lewerenz, T. Bitzer, M. Gruyters, K. Jacobi, Electrolytic hydrogenation of silicon: a high resolution electron loss spectroscopy investigation, J. Electrochem. Soc. 140, L44–L46 (1993)

    Article  Google Scholar 

  17. K. Jacobi, M. Gruyters, P. Geng, T. Bitzer, M. Aggour, S. Rauscher, H.J. Lewerenz, Hydrogenation of Si(1 1 3) surfaces by (photo)electrochemical treatment, Phys. Rev. B 51, 5437–5440 (1995)

    Article  ADS  Google Scholar 

  18. M. Lublow, T. Stempel, K. Skorupska, A.G. Munoz, M. Kanis, H.J. Lewerenz, Morphological and chemical optimization of ex-situ NH4F conditioned Si(1 1 1)-(1 ×1):H, Appl. Phys. Lett. 93, 062112 (2008)

    Article  ADS  Google Scholar 

  19. S. Garbarino, A. Pereira, C. Hamel, É. Irissou, M. Chaker, D. Guay, Effect of size on the electrochemical stability of Pt nanoparticles deposited on gold substrate, J. Phys. Chem. C 114, 2980–2988 (2010)

    Article  Google Scholar 

  20. J. Azoulay, Photoelectron spectroscopy-principles and applications, Vacuum 33, 211–213 (1983)

    Article  Google Scholar 

  21. H.J. Lewerenz, K. Schulte, Combined photoelectrochemical conditioning and surface analysis of InP photocathodes: II. Photoelectron spectroscopy, Electrochim. Acta 47, 2639–2651 (2002)

    Google Scholar 

  22. M. Alonso, R. Cimino, K. Horn, Surface photovoltage effects in photoemission from metal-GaP(1 1 0) interfaces: importance for band bending evaluation, Phys. Rev. Lett. 64, 1947–1950 (1990)

    Article  ADS  Google Scholar 

  23. S.L. Molodtsov, S.V. Halilov, V.D.V. Servedio, M. Richter, C. Laubschat, Solid state effects in photoionization cross sections: Cooper minima in photoemission, Nucl. Instrum. Meth. Phys. Res. A 470, 274–277 (2001)

    Article  ADS  Google Scholar 

  24. J. Ristein, W. Stein, L. Ley, Photoelectron yield spectroscopy on negative electron affinity diamond surfaces: a contactless unipolar transport experiment, Diamond Rel. Mat. 7, 626–631 (1998)

    Article  ADS  Google Scholar 

  25. L.C. Feldman, J.W. Mayer, Fundamentals of Surface and Thin Film Analysis (Prentice Hall, Upper Saddle River, 1986)

    Google Scholar 

  26. K.L. Kliewer, Nonlocal effects in photoemission studies with nonnormally incident light, Phys. Rev. Lett. 33, 900–903 (1974)

    Article  ADS  Google Scholar 

  27. M. Perner et al., Optically induced damping of the surface plasmon resonance in gold colloids, Phys. Rev. Lett. 78, 2192–2195 (1997)

    Article  ADS  Google Scholar 

  28. K. Hübner, Chemical bond and related properties of SiO2. III. Core-level shifts in SiOx, Phys. Stat. Sol. (a) 42, (1977) 501–509

    Google Scholar 

  29. T.D. Thomas, Extra-atomic relaxation energies and the auger parameter, J. Electron. Spectrosc. Rel. Phenom. 20, 117–125 (1980)

    Article  Google Scholar 

  30. P.Y. Timbrell, A.J. Gellman, R.M. Lambert, R.F. Willis, Negative ion resonance selective mode enhancement in the HREEL spectrum of C2H2 on Pd(1 1 1), Surf. Sci. 206, 339–347 (1988)

    Article  ADS  Google Scholar 

  31. H. Ibach, Electron Energy Loss Spectrometers (Springer, Berlin, Heidelberg, 1991)

    Google Scholar 

  32. H. Ikeda, Y. Nakagawa, M. Toshima, S. Furuta, S. Zaima, Y. Yasuda, Initial oxidation of H-terminated Si(1 1 1) surfaces studied by HREELS, Appl. Surf. Sci. 117,109–113 (1997)

    Article  ADS  Google Scholar 

  33. A. Uhlir Jr., Electrolytic shaping of germanium and silicon, Bell System Tech. J. 35, 333–347 (1956)

    Google Scholar 

  34. S.A. Campbell, H.J. Lewerenz (eds.), in Semiconductor Micromachining, vols. 1, 2 (Wiley, Chichester, New York, 1998)

    Google Scholar 

  35. J. Grzanna, T. Notz, H.J. Lewerenz, Model for current oscillations at the Si/electrolyte contact: extension to spatial resolution, ECS Trans. 16, 173–180 (2008)

    Article  Google Scholar 

  36. J. Grzanna, H. Jungblut, H.J. Lewerenz, A model for electrochemical oscillations at the Si/electrolyte contact Part I. Theoretical development, J. Electroanal. Chem. 486, 181–189 (2000)

    Google Scholar 

  37. R. Tenne, V. Marcu, Y. Prior, Photoelectrochemical etching of compound semiconductors: wavelength dependence, Appl. Phys. A 37, 205–209 (1985)

    Article  ADS  Google Scholar 

  38. H.J. Lewerenz, H. Jungblut, S. Rauscher, Surface analysis of the electropolishing layer on Si(1 1 1) in ammoniumfluoride solution, Electrochim. Acta 45, 4615–4627 (2000)

    Article  Google Scholar 

  39. S.D. Collins, Etch stops, in Semiconductor Micromachining, ed. by S.A. Campbell, H.J. Lewerenz. Techniques and Industrial Applications, vol. 2, (Wiley, Chichester, New York, 1998)

    Google Scholar 

  40. E. Budevski, G. Staikov, W.J. Lorenz, Electrochemical Phase Formation and Growth. An Introduction to the Initial Stages of Metal Deposition (Wiley, New York, 1996)

    Google Scholar 

  41. Y. Zhang et al., Underpotential deposition of copper on electrochemically prepared conductive ruthenium oxide surface, Electrochem. Sol. State Lett. 7, C107–C110 (2004)

    Article  Google Scholar 

  42. K.J. Bachmann, Wet and dry etching: a comparison in the context of solid state electronics applications, in Semiconductor Micromachining, ed. by S.A. Campbell, H.J. Lewerenz. Techniques and Industrial Applications, vol. 2, (Wiley, Chichester, New York, 1998)

    Google Scholar 

  43. O.J. Glembocki, R.E. Stahlbush, M. Tomkiewicz, Bias-dependent etching of silicon in aqueous KOH, J. Electrochem. Soc. 132, 145–151 (1985)

    Article  Google Scholar 

  44. A.G. Cullis, L.T. Canham, Visible light emission due to quantum size effects in highly porous crystalline silicon, Nature 353, 335–337 (1991)

    Article  ADS  Google Scholar 

  45. H.J. Lewerenz, J. Jakubowicz, H. Jungblut, Metastable stage of porous silicon formation: the role of h-terminated low index faces, Electrochem. Commun. 6, 838–842 (2004)

    Article  Google Scholar 

  46. D.J. Monk, D.S. Soane, R.T. Howe, A review of the chemical reaction mechanism and kinetics for hydrofluoric acid etching of silicon dioxide for surface micromachining applications, Thin Solid Films 232, 1–12 (1993)

    Article  ADS  Google Scholar 

  47. P. Allongue, V. Costa Kieling, H. Gerischer, Etching of silicon in NaOH solutions. II: Electrochemical studies of n-Si(1 1 1) and (1 0 0) and mechanism of the dissolution, J. Electrochem. Soc. 140, 1018–1026 (1993)

    Google Scholar 

  48. T. Baum, D. Schiffrin, Kinetic isotopic effects in the anisotropic etching of p-Si(1 0 0) in alkaline solutions, J. Electroanal. Chem. 436, 239–244 (1997)

    Article  Google Scholar 

  49. H.J. Lewerenz, M. Aggour, C. Murrell, M. Kanis, H. Jungblut, J. Jakubowicz, P.A. Cox, S.A. Campbell, P. Hoffmann, D. Schmeißer, Initial stages of structure formation on silicon electrodes investigated by photoelectron spectroscopy using synchrotron radiation and in-situ atomic force microscopy, J. Electrochem. Soc. 150, E185–E189 (2003)

    Article  Google Scholar 

  50. P. Allongue, V. Kieling, H. Gerischer, Etching mechanism and atomic structure of H–Si(1 1 1) surfaces prepared in NH4F, Electrochim. Acta. 40, 1353–1360 (1995)

    Article  Google Scholar 

  51. H. Jungblut, J. Jakubowicz, H.J. Lewerenz, Observation of a transitory structure during porous silicon formation: stability of Si (1 ×1) H-terminated surfaces and facets, Surf. Sci. 597, 93–101 (2005)

    Article  ADS  Google Scholar 

  52. K. Siegbahn, Electron spectroscopy for atoms, molecules, and condensed matter, Rev. Mod. Phys. 54, 709–728 (1982)

    Article  ADS  Google Scholar 

  53. E. Foca, J. Carstensen, H. Föll, Modelling electrochemical current and potential oscillations at the Si electrode, J. Electroanal. Chem. 603, 175–202 (2007)

    Article  Google Scholar 

  54. R.T. Sanderson, Chemical principles revisited: principles of electronegativity – Part I. General nature, J. Chem. Educat. 65, 112–118 (1988)

    Google Scholar 

  55. H.J. Lewerenz, in Tailoring of Interfaces for the Electrochemical Conversion of Solar Energy, Advances in Electrochemical Science and Engineering, vol. 12, ed. by R. Alkire, D. Kolb, P. Ross (Wiley, New York, 2010), pp.61–181

    Google Scholar 

  56. A. Dmol, Density Functional Theory Program with the Insight Molecular Modelling Package (MSI, San Diego, CA, 1996)

    Google Scholar 

  57. H.J. Lewerenz, J. Stumper, L.M. Peter, Deconvolution of charge injection steps in quantum yield multiplication on silicon, Phys. Rev. Lett. 61, 1989–1991 (1988)

    Article  ADS  Google Scholar 

  58. J. Stumper, H.J. Lewerenz, C. Pettenkofer, X-ray photoemission spectroscopy analysis of Si(1 1 1) under photocurrent doubling conditions, Phys. Rev. B 41, 1592–1597 (1990)

    Article  ADS  Google Scholar 

  59. H.J. Lewerenz, M. Aggour, C. Murrell, J. Jakubowicz, M. Kanis, S.A. Campbell, P.A. Cox, P. Hoffmann, H. Jungblut, D. Schmeißer, High resolution surface analysis of Si roughening in dilute ammonium fluoride solution, J. Electroanal. Chem. 540, 3–6 (2003)

    Article  Google Scholar 

  60. Y. Gassenbauer, A. Knop-Gericke, R. Schlögl et al., Surface potential changes of semiconducting oxides monitored by high-pressure photoelectron spectroscopy: Importance of the electron concentration at the surface, Sol. State Ion. 117, 3123–3127 (2006)

    Article  Google Scholar 

  61. H.J. Lewerenz, J. Jakubowicz, H. Jungblut, Nascent phase of porous silicon, Electrochem. Commun. 6, 1243–1248 (2004)

    Article  Google Scholar 

  62. K. Skorupska, T. Vo-Dinh, H.J. Lewerenz, Scanning probe characterization of enzymes deposited onto step-bunched silicon nanostructures, Phys. Scripta 79, 065801 (2009)

    Article  ADS  Google Scholar 

  63. H.J. Lewerenz, Enzyme–semiconductor interactions: routes from fundamental aspects to photoactive devices, Phys. Stat. Sol. (b) 245, 1884–1898 (2008)

    Article  ADS  Google Scholar 

  64. K. Skorupska, J. Golbeck, P. Ugarte-Berzel, M. Lublow, H.J. Lewerenz, Immobilization of photosystem II on step-bunched silicon: a combined AFM and Brewster angle reflectometry investigation, unpublished results

    Google Scholar 

  65. K. Skorupska, M. Lublow, M. Kanis, H. Jungblut, H.J. Lewerenz, Electrochemical preparation of a stable accumulation layer on Si: a synchrotron radiation photoelectron spectroscopy study, Appl. Phys. Lett. 87, 262101 (2005)

    Article  ADS  Google Scholar 

  66. D.K. Avasthi, Developments in nuclear techniques for hydrogen depth profiling, Bull. Mater. Sci. 19, 4–14 (1996)

    Google Scholar 

  67. R. Rizk, P. de Mierry, D. Ballutaud, M. Aucouturier, D. Mathiot, Hydrogen diffusion and passivation processes in p- and n-type silicon, Phys. Rev. B. 44, 6141–6151 (1991)

    Article  ADS  Google Scholar 

  68. K.v. Klitzing, G. Dorda, M. Pepper, New method for high-accuracy determination of the fine-structure constant based on quantized hall, Phys. Rev. Lett. 45, 494–497 (1980)

    Google Scholar 

  69. D.C. Tsui, H.L. Störmer, A.C. Gossard, Two-dimensional magnetotransport in the extreme quantum limit, Phys. Rev. Lett. 48, 1559–1562 (1982)

    Article  ADS  Google Scholar 

  70. S.A. Wolf et al., Spintronics: a spin-based electronics vision for the future, Science 294, 1488–1495 (2001)

    Article  ADS  Google Scholar 

  71. P.P. Deimel, in Semiconductor Micromachining, ed. by S.A. Campbell, H.J. Lewerenz. Techniques and Industrial Applications, vol. 2 (Wiley, New York, 1998)

    Google Scholar 

  72. H.J. Lewerenz, H. Jungblut, Photovoltaik; Grundlagen und Anwendungen (Springer, Heidelberg, 1995)

    Book  Google Scholar 

  73. J. Zhao, A. Wang, M.A. Green, 24.5% efficiency silicon PERT cells on MCZ substrates and 24.7% efficiency PERL cells on FZ substrates, Progr. Photovolt. Res. Appl. 7, 471–474 (1999)

    Google Scholar 

  74. B. Wu, Photomask plasma etching: a review, J. Vac. Sci. Technol. B 24, 1–15 (2006)

    Article  MATH  Google Scholar 

  75. W.P. Maszara, Silicon-on-insulator by wafer bonding: a review, J. Electrochem. Soc. 138, 341–347 (1991)

    Article  Google Scholar 

  76. L. Smith, A. Söderbärg, Electrochemical etch stop obtained by accumulation of free carriers without P–N junction, J. Electrochem. Soc. 140, 271–275 (1993)

    Article  Google Scholar 

  77. E.W. Becker, W. Ehrfeld, P. Hagman, A. Maner, D. Münchmeyer, Fabrication of microstructures with high aspect ratios and great structural heights by synchrotron radiation lithography, galvanoforming, and plastic moulding (LIGA process), Microelectron. Eng. 4, 35–56 (1986)

    Article  Google Scholar 

  78. J. Vollmer, H. Hein, W. Menz, F. Walter, Bistable fluidic elements in LIGA technique for flow control in fluidic microactuators, Sensors Actuat. A 43, 330–334 (1994)

    Article  Google Scholar 

  79. M. Aggour, K. Skorupska, T. Stempel Perreira, H. Jungblut, J. Grzanna, H.J. Lewerenz, Photoactive silicon-based nanostructure by self-organized electrochemical processing, J. Electrochem. Soc. 154, H794–H797 (2007)

    Article  Google Scholar 

  80. H.J. Lewerenz, T. Bitzer, Electrolytic hydrogenation of silicon, J. Electrochem. Soc. 139, L21–L23 (1992)

    Article  Google Scholar 

  81. J.H. Ye, K. Kaji, K. Itaya, Atomic-scale elucidation of the anisotropic etching of (1 1 0) n-Si in aqueous NH4F: studies by in-situ scanning tunneling microscopy, J. Electrochem. Soc. 143, 4012–4019 (1996)

    Article  Google Scholar 

  82. H.W.B. Skinner, The soft X-ray spectroscopy of solids. I. K- and L-emission spectra from elements of the first two groups, Philos. Trans. Roy. Soc. Lon., Ser. A 239, 95–134 (1940)

    Google Scholar 

  83. S. Eisebitt, W. Eberhardt, Band structure information and resonant inelastic soft X-ray scattering in broad band solids, J. Electron. Spectr. Rel. Phen. 110–111, 335–358 (2000)

    Article  Google Scholar 

  84. H.J. Lewerenz, H. Goslowsky, K.-D. Husemann, S. Fiechter, Efficient solar energy conversion with CuInS2, Nature 321, 687–688 (1986)

    Article  ADS  Google Scholar 

  85. S. Menezes, H.J. Lewerenz, K.J. Bachmann, Efficient and stable solar cell by interfacial film formation, Nature 305, 615–616 (1983)

    Article  ADS  Google Scholar 

  86. R. Scheer, T. Walther, H.W. Schock, M.L. Fearheiley, H.J. Lewerenz, Development and characterization of a CuInS2 based solar cell with 10.2% efficiency, Appl. Phys. Lett. 63, 3294–3296 (1993)

    Google Scholar 

  87. C.H. Fischer, H.J. Lewerenz, M.C. Lux-Steiner, W. Gudat, F. Karg et al., X-rays shed light on the “Hidden” interfaces of solar cells, Bessy Highlights 2003, 15–16 (2004)

    Google Scholar 

  88. J.E. Jaffe, A. Zunger, Electronic structure of the ternary chalcopyrite semiconductors CuAlS2, CuGaSs, CuInS2, CuAlSe2, CuGaSe2, and CuInSe2, Phys. Rev. B 28, 5822–5847 (1983)

    Article  ADS  Google Scholar 

  89. T. Wilhelm, B. Berenguier, M. Aggour, M. Kanis, H.J. Lewerenz, Efficient CuInS2 (CIS) solar cells by photoelectrochemical conditioning, Compt. Rendus Chim. 9, 294–300 (2006)

    Article  Google Scholar 

  90. P. Glatzel et al., The electronic structure of Mn in oxides, coordination complexes, and the oxygen-evolving complex of photosystem II studied by resonant inelastic X-ray scattering, J. Am. Chem. Soc. 126, 9946–9959 (2004)

    Article  Google Scholar 

  91. M. Brüßler, H. Metzner, K.-D. Husemann, H.J. Lewerenz, Phase identification in the Cu–In–S system by perturbed angular correlations, Phys. Rev. B 38, 9268–9271 (1988)

    Article  ADS  Google Scholar 

  92. H. Metzner, M. Brüssler, K.-D. Husemann, H.J. Lewerenz, Phase identification in the Cu–In–S system II: a combined study by perturbed angular correlation and X-ray analysis, Phys. Rev. B 44, 11614–11623 (1991)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans-Joachim Lewerenz .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lewerenz, HJ. (2012). High-Energy Photons for Surface/Interface Analysis and Materials Science. In: Photons in Natural and Life Sciences. Springer Series in Optical Sciences, vol 157. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23749-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-23749-2_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-23748-5

  • Online ISBN: 978-3-642-23749-2

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics