Skip to main content

Photon Generation in Electronic Transitions: Lasers and Nanoscopic Sources

  • Chapter
  • First Online:
Photons in Natural and Life Sciences

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 157))

  • 1269 Accesses

Abstract

As an extension of the methods to generate photons, this chapter elaborates on electromagnetic radiation that originates from energy dissipation in electronic transitions between quantum states.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. T. Maiman, Stimulated optical radiation in ruby, Nature 187, 493–494 (1960)

    Article  ADS  Google Scholar 

  2. A. Einstein, Zur Quantentheorie der Strahlung (On the Quantum Theory of Radiation), Physika Zeitschrift 18, 121–128 (1917)

    ADS  Google Scholar 

  3. M. Göppert-Mayer, Über Elementarakte mit zwei Quantensprüngen, Ann. Phys. (Leipzig) 9, 273–294 (1931)

    Google Scholar 

  4. J.D. Franson, Bell inequality for position and time, Phys. Rev. Lett. 62, 2205–2208 (1989)

    Article  ADS  Google Scholar 

  5. W. Perrie, A.J. Duncan, H.J. Beyer, H. Kleinpoppen, Polarization correlation of the two photons emitted by metastable atomic deuterium: a test of Bell’s inequality, Phys. Rev. Lett. 54, 1790 (1985)

    Article  ADS  Google Scholar 

  6. F. Helmchen, W. Denk, Deep tissue two photon microscopy, Nat. Methods 2, 932–940 (2005)

    Article  Google Scholar 

  7. W.R. Zipfel, R.M. Williams, W.W. Webb, Nonlinear magic: multiphoton microscopy in the biosciences, Nat. Biotechnol. 21, 1369–1377 (2003)

    Article  Google Scholar 

  8. H. Daido, Review of soft x-ray Laser researches and developments, Rep. Prog. Phys. 65, 1513–1576 (2002)

    Article  ADS  Google Scholar 

  9. P. Albertano et al., Atmospheric pressure soft X-ray source, for contact microscopy and radiobiology applications, SPIE Int. Conf. Opt. Sci. 3157, 164–175 (1997)

    ADS  Google Scholar 

  10. D.L. Matthews et al., Demonstration of a soft X-ray amplifier, Phys. Rev. Lett. 54, 110–113 (1985)

    Article  ADS  Google Scholar 

  11. M.D. Rosen et al., Exploding-foil technique for achieving a soft X-ray laser, Phys. Rev. Lett. 54, 106–109 (1985)

    Article  ADS  Google Scholar 

  12. S. Suckewer, C.H. Skinner, H. Milchberg, C. Keane, D. Voorhees, Amplification of stimulated soft X-ray emission in a confined plasma column, Phys. Rev. Lett. 55, 1753–1756 (1985)

    Article  ADS  Google Scholar 

  13. P.V. Nickles, V.N. Shlyaptsev, M. Kalachnikov, M. Schnürer, I. Will, W. Sander, Short pulse X-ray laser at 32.6nm based on transient gain in Ne-like titanium, Phys. Rev. Lett. 78, 2748–2751 (1997)

    Google Scholar 

  14. R. Wagner, S.-Y. Chen, A. Maksimchuk, D. Umstadter, Electron acceleration by a laser wakefield in a relativistically self-guided channel, Phys. Rev. Lett. 78, 3125–3128 (1997)

    Article  ADS  Google Scholar 

  15. T.-Y. Chien et al., Prepulse controlled splitting of relativistically self-guided channel and suppression of Raman forward scattering instability, Phys. Plasm. 11, 1173–1177 (2004)

    Article  ADS  Google Scholar 

  16. P. Facci, D. Alliata, L. Andolfi, B. Schnyder, R. Kötz, Formation and characterization of protein monolayers on oxygen-exposing surfaces by multiple step self-chemisorption, Surf. Sci. 504, 282–292 (2002)

    Article  ADS  Google Scholar 

  17. G.W. Faris, M.J. Dyer, D.L. Huestis, W.K. Bischel, Two-photon spectroscopy of the F1 Π g and f3 Π g states of molecular fluorine, J. Chem. Phys. 97, 5964–5969 (1992)

    Article  ADS  Google Scholar 

  18. S.M. Hooker, A.M. Haxell, C.E. Webb, Influence of cavity configuration on the pulse energy of a high-pressure molecular fluorine laser, Appl. Phys. B 55, 54–59 (1992)

    Article  ADS  Google Scholar 

  19. T. Itani, W. Wakamiya, Progress in 157 nm lithography development for 70-nm mode, Microelectr. Eng. 61–62, 49–55 (2002)

    Article  Google Scholar 

  20. P.A.M. Dirac, Lectures on quantum mechanics, Belfer Graduate School of Science Monographs Series 2 (1964)

    Google Scholar 

  21. R.T. Hodgson, P.P. Sorokin, J.J. Wynne, Tunable coherent vacuum-ultraviolet generation in atomic vapors, Phys. Rev. Lett. 32 343–346 (1974)

    Article  ADS  Google Scholar 

  22. M. Maeda, Short-lifetime measurement of molecules in the vacuum ultraviolet using high-resolution laser spectroscopy, Jpn. J. Appl. Phys. 24(1985) 717–722

    Article  ADS  Google Scholar 

  23. M. Kobayashi, H. Inaba, Photon statistics and correlation analysis of ultraweak light originating from living organisms for extraction of biological information, Appl. Optics 39, 183–192 (2000)

    Article  ADS  Google Scholar 

  24. J.K. Norskov, D.M. Newns, B.I. Lundqvist, Molecular orbital description of surface chemiluminescence, Surf. Sci. 80, 179–188 (1979)

    Article  ADS  Google Scholar 

  25. J.D. Holmes, K.P. Johnston, R.C. Doty, B.A. Kogel, Control of the thickness and orientation of solution-grown silicon nanowires, Science 287, 1471–1473 (2000)

    Article  ADS  Google Scholar 

  26. J. Zimmermann, A. Zeug, B. Röder, A generalization of the Jablonski diagram to account for polarization and anisotropy effects in time-resolved experiments, Phys. Chem. Chem. Phys. 5, 2964–2969 (2003)

    Article  Google Scholar 

  27. O. Inomoto, T. Ohya, S. Kai, Intensity oscillation of chemiluminescence in ferroin-catalyzed Belousov–Zhabotinsky reaction, Forma 15,213–218 (2000)

    Google Scholar 

  28. B.P. Belousov, A periodic reaction and its mechanism, Sb. Ref. Radiats. Med. 145–147 (1959)

    Google Scholar 

  29. T. Wilson, J.W. Hastings, Bioluminescence, Annu. Rev. Cell Devel. Biol. 14 197–230 (1998)

    Article  Google Scholar 

  30. Y.K. Su et al., InGaN/GaN blue light-emitting diodes with self-assembled quantum dots, Semicond. Sci. Technol. 19, 389–392 (2004)

    Article  ADS  Google Scholar 

  31. H.J. Lewerenz, G. Schlichthörl, Light-induced oscillating reactions of silicon in ammonium fluoride solutions: Part 1. Simultaneous photocurrent and excess microwave reflectivity measurements, J. Electroanal. Chem. 327, 85–92 (1992)

    Google Scholar 

  32. H.J. Lewerenz, Spatial and temporal oscillation at Si(111) electrodes in aqueous fluoride-containing solution, J. Phys. Chem. B 101, 2421–2425 (1997)

    Article  Google Scholar 

  33. A.T. Bharucha-Reid, Elements of the Theory of Markov Processes and Their Applications, (McGraw-Hill, New York, 1960)

    MATH  Google Scholar 

  34. J. Grzanna, H.J. Lewerenz, H. Jungblut, A model for electrochemical oscillations at the Si/electrolyte contact Part I. Theoretical development, J. Electroanal. Chem. 486, 181–189 (2000)

    Google Scholar 

  35. J. Grzanna, H.J. Lewerenz, H. Jungblut, A model for electrochemical oscillations at the Si/electrolyte contact Part II. Simulations and experimental results, J. Electroanal. Chem. 486, 190–203 (2000)

    Google Scholar 

  36. J. Rappich, V.Y. Timoshenko, Th. Dittrich, Correlation between surface non-radiative recombination and current oscillation at p-Si(100) during electropolishing in fluoride solution, Ber. Bunsenges. Phys. Chem. 101, 139–142 (2000)

    Article  Google Scholar 

  37. I.L. Krestnikov, N.N. Ledentsov, A. Hoffmann, D. Bimberg, Quantum dot origin of luminescence in InGaN-GaN structures, Phys. Rev. B 66, 155310 (2002)

    Article  ADS  Google Scholar 

  38. D. Snoke, S. Denev, Y. Liu, L. Pfeiffer, K. West, Long-range transport in excitonic dark states in coupled quantum wells, Nature 418, 754–757 (2002)

    Article  ADS  Google Scholar 

  39. L.V. Butov, A.C. Gossard, D.S. Chemla, Macroscopically ordered state in an exciton system, Nature 418, 751–754 (2002)

    Article  ADS  Google Scholar 

  40. R. Rinaldi et al., Zeeman effect in parabolic quantum dots, Phys. Rev. Lett. 77, 342–345 (1996)

    Article  ADS  Google Scholar 

  41. Y. Xu, H. Naramoto, K. Narumi, K. Miyashita, T. Kamiya, T. Sakai, Strong anti-Stokes luminescence from H + -irradiated diamond, Appl. Phys. Lett. 83, 1968–1970 (2003)

    Article  ADS  Google Scholar 

  42. V.P. Drachev et al., Quantum size effect in two-photon excited luminescence from silver nanoparticles, Phys. Rev. B 69, 035318 (2004)

    Article  ADS  Google Scholar 

  43. J. Lambe, S.L. McCarthy, Light emission from inelastic electron tunneling, Phys. Rev. Lett. 37, 923–925 (1976)

    Article  ADS  Google Scholar 

  44. J.K. Sass, H.J. Lewerenz, Photoemission yield spectroscopy of metal electrodes, J. Phys. Colloques 38, C5-277–C5-284 (1977)

    Google Scholar 

  45. D.M. Kolb, M. Przasnyski, H. Gerischer, Underpotential deposition of metals and work function differences, J. Electroanal. Chem. Interf. Electrochem. 54, 25–38 (1974)

    Article  Google Scholar 

  46. J.K. Sass, S. Stucki, H.J. Lewerenz, Plasma resonance absorption in interfacial photoemission from very thin silver films on Cu(111), Surf. Sci. 68, 429–435 (1977)

    Article  ADS  Google Scholar 

  47. H. Raether, Plasmons on Smooth and on Rough Surfaces and on Gratings (Springer, Berlin, 1988)

    Google Scholar 

  48. R. Kötz, D.M. Kolb, The appearance of the bulk Plasmon in thin silver overlayers monitored by electrochemical modulation spectroscopy, Surf. Sci. 97, 575–585 (1980)

    Article  ADS  Google Scholar 

  49. M. Rasigni, G. Rasigni, G. Palmari, Surface plasmon and autocorrelation functions for rough surfaces of silver deposits, Phys. Rev. B 23, 527–531 (1981)

    Article  ADS  Google Scholar 

  50. J. Homola, S.S. Yee, G. Gauglitz, Surface plasmon resonance sensors: a review, Sensor. Actuat B: Chem. 54, 3–15 (1999)

    Article  Google Scholar 

  51. R.D. Young, J. Ward, F. Scire, The topografiner: an instrument for measuring surface microtopography, Rev. Sci. Instrum. 43, 999–1011 (1972)

    Article  Google Scholar 

  52. J.H. Coombs, J.K. Gimzewski, B. Reihl, J.K. Sass, R.R. Schittler, Photon emission experiments with the scanning tunnelling microscope, J. Microscop. 152, 325–336 (1988)

    Article  Google Scholar 

  53. R. Berndt et al., Photon emission at molecular resolution induced by a scanning tunnelling microscope, Science 262, 1425–1427 (1993)

    Article  ADS  Google Scholar 

  54. R.W. Rendell, D.J. Scalapino, Surface plasmons confined by microstructures on tunnel junctions, Phys. Rev. B 24, 3276–3294 (1981)

    Article  ADS  Google Scholar 

  55. B. Laks, D.L. Mills, Photon emission from slightly roughened tunnel junctions, Phys. Rev. B 20, 4962–4980 (1979)

    Article  ADS  Google Scholar 

  56. A. Takeuchi, J. Watanabe, Y. Uehara, S. Ushioda, Prism coupled light emission from tunnel junctions containing interface roughness: theory, Phys. Rev. B 38, 12948–12958 (1988)

    Article  ADS  Google Scholar 

  57. P. Johansson, R. Monreal, P. Apell, Theory for light emission from a scanning tunnelling microscope, Phys. Rev. B 42, 9210–9213 (1990)

    Article  ADS  Google Scholar 

  58. W.L. Barnes, Fluorescence near interfaces: the role of photonic mode density, J. Mod. Optics 45, 661–699 (1998)

    Article  ADS  Google Scholar 

  59. X.H. Qiu, G.V. Nazin, W. Ho, Vibrationally resolved fluorescence with submolecular precision, Science 299, 542–546 (2003)

    Article  ADS  Google Scholar 

  60. G. Hoffmann, J. Kliewer, R. Berndt, Luminescence from metallic quantum wells in a scanning tunneling microscope, Phys. Rev. Lett. 87, 176803 (2002)

    Article  ADS  Google Scholar 

  61. S.A. Campbell, H.J. Lewerenz (eds.), Semiconductor Micromachining, Fundamental Electrochemistry and Physics, vol. 1; Techniques and Industrial Applications, vol 2 (Wiley, Chicester, 1998)

    Google Scholar 

  62. G.L. Hornyak, H.F. Tibbals, J. Dutta, J.J. Moore, Introduction to Nanoscience and Nanotechnology, (CRC, Boca Raton, FL, 2008)

    Google Scholar 

  63. V.G. Veselago, The electrodynamics of substances with simultaneously negative values of ε and μ, Sov. Phys. USPEKHI 10, 509–514 (1968)

    Article  ADS  Google Scholar 

  64. F. Cappolino, Applications of Metamaterials (Routledge, London, 2009)

    Book  Google Scholar 

  65. J.B. Pendry, Negative refraction makes a perfect lens, Phys. Rev. Lett. 85, 3966–3969 (2000)

    Article  ADS  Google Scholar 

  66. J.B. Pendry, D. Schurig, D.R. Smith, Controlling electromagnetic fields, Science 312, 1780–1782 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  67. V.M. Shalaev, Optical negative-index metamaterials, Nat. Photonics 1, 41–48 (2007)

    Article  ADS  Google Scholar 

  68. M. Duran-Sindreu, F. Aznar, A. Vélez, J. Bonache, F. Martin, Analysis and applications of OSSR- and OCSSR-loaded transmission lines: A new path for the design of compact transmission line metamaterials, Metamaterials 4, 139–148 (2010)

    Article  ADS  Google Scholar 

  69. S.H. Lee, C.M. Park, Y.M. Seo, Z.G. Wang, C.K. Kim, Reverse Doppler effect of sound, Phys. Rev. Lett. 104, 045 301 (2010)

    Google Scholar 

  70. H. Chen, M. Chen, Flipping photons backward: reversed Cherenkov radiation, Mater. Today 14, 34–41 (2011)

    Article  Google Scholar 

  71. D.R. Smith, J.B. Pendry, M.C.K. Wiltshire, Metamaterials and negative refractive index, Science 305, 788–792 (2004)

    Article  ADS  Google Scholar 

  72. R.A. Shelby, D.R. Smith, S. Schultz, Experimental verification of a negative index of refraction, Science 292, 77–79 (2001)

    Article  ADS  Google Scholar 

  73. L. Menon, W.T. Lu, A.L. Friedman, S.P. Bennett, D. Heiman, S. Sridhar, Negative index metamaterials based on metal-dielectric nanocomposites for imaging applications, Appl. Phys. Lett. 93, 123 117 (2008)

    Google Scholar 

  74. A.A. Zharov, N.A. Zharova, On the electromagnetic cloaking of (nano)particles, Bull. Russ. Acad. Sci.: Phys. 74, 89–92 (2010)

    Google Scholar 

  75. A. Alú, N. Engheta, Plasmonic and metamaterial cloaking: physical mechanisms and potentials, J. Optics A: Pure Appl. Optics, 10, 093 002 (2008)

    Google Scholar 

  76. J. Lee, Bioluminescence: The first 3000 years, J. Sib. Fed. Univ. Biol. 1, 194–205 (2008)

    Google Scholar 

  77. T. Wessel-Berg, Ball lighting and atmospheric light phenomena: a common origin? J. Sci. Explor. 18, 439–481 (2004)

    Google Scholar 

  78. J.W. Hastings, Biological diversity, chemical mechanisms, and the evolutionary origins of bioluminescent systems, J. Mol. Evol. 19, 309–321 (1983)

    Article  Google Scholar 

  79. G. Gassmann, D. Glindemann, Phosphane (PH3) in the biosphere, Angew. Chem. Int. Ed. 32, 761–762 (1993)

    Article  Google Scholar 

  80. J.S. Derr, Earthquake lights: A review of observations and present theories, Bull. Seismol. Soc. Am. 63, 3177–2187 (1973)

    Google Scholar 

  81. M. Kamogawa, H. Ofuruton, Y.-H. Ohtsuki, Earthquake light: 1995 Kobe earthquake in Japan, Atmosph. Res. 76, 438–444 (2005)

    Article  ADS  Google Scholar 

  82. C. Fidani, The earthquake lights (EQL) of the 6 April 2009 Aquila earthquake, in Central Italy, Nat. Haz. Earth Syst. Sci. 10, 967–978 (2010) Aquila earthquake

    Google Scholar 

  83. F. St-Laurent, The Saguenay, Québec, earthquake lights of November 1988–January 1989, Seismol. Res. Lett. 71, 160–174 (2000)

    Article  Google Scholar 

  84. H. Tributsch, When the Snakes Awake (MIT, Cambridge, MA 1983)

    Google Scholar 

  85. F.T. Freund, Rocks that crackle and sparkle and glow: Strange pre-earthquake phenomena, J. Sci. Explor. 17, 37–71 (2003)

    Google Scholar 

  86. W.F. Brace, W. Pauling, C. Scholz, Dilatancy in the fracture of crystalline rocks, J. Geophys. Res. 71, 3939–3953 (1966)

    Article  ADS  Google Scholar 

  87. H. Schulz, K.H. Thiemann, Crystal structure refinement of AlN and GaN, Sol. St. Comm. 23, 815–819 (1977)

    Article  ADS  Google Scholar 

  88. H. Masui, S. Nakamura, S.P. DenBaars, U.K. Mishra, Nonpolar and semipolar III-nitride light-emitting diodes: achievements and challenges, IEEE Transact. Electron Dev. 57, 88–100 (2010)

    Article  ADS  Google Scholar 

  89. Y. Bernabé, Streaming potentials in heterogeneous networks, J. Geophys. Res. 103, 20827–20841 (1998)

    Article  ADS  Google Scholar 

  90. F. Freund, Towards a unified solid state theory for pre-earthquake signals, Acta Geophysica 58, 719–766 (2010)

    Article  ADS  Google Scholar 

  91. R. Guckenberger, M. Heim, G. Cevc, H.F. Knapp, W. Wiegräbe, A. Hillebrand, Scanning tunneling microscopy of insulators and biological specimen based on lateral conductivity of ultrathin water films, Science 266, 1538–1540 (1994)

    Article  ADS  Google Scholar 

  92. J. Eyers, Don’t Shoot the Albatross!: Nautical Myths and Superstitions (A&C Black, London, 2011)

    Google Scholar 

  93. E.M. Wescott, D.D. Sentman, M.J. Heavner, T.J. Halliman, D.L. Osborne, The optical spectrum of aircraft St. Elmo’s fire, Geophys. Res. Lett. 23, 3687–3690 (1995)

    Google Scholar 

  94. S.Y. van der Werf, G.P. Können, W.H. Lehn, Novaya Zemlya effect and sunsets, Appl. Optics 42, 367–378 (2003)

    Article  ADS  Google Scholar 

  95. A.A. Gurwitsch, A historical review of the problem of mitogenic radiation, Experentia 44, 545–550 (1988)

    Article  Google Scholar 

  96. B. Devaraj, M. Usa, H. Inaba, Biophotons: ultraweak light emission from living systems, Curr. Opin. Sol. State Mat. Sci. 2, 188–193 (1997)

    Article  ADS  Google Scholar 

  97. Y. Sun, C. Wang, J. Dai, Biophotons as neural communication signals demonstrated by in-situ biophoton autography, Photochem. Photobiol. Sci. 9, 315–322 (2010)

    Article  Google Scholar 

  98. X. Shen, X. Han, J. Tian, F. Zhao, L. Xu, X. Li, Spontaneous luminescence from soybean Rhizobium bacteroids, FEMS Microbiol. Lett. 81, 335–340 (1991)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans-Joachim Lewerenz .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lewerenz, HJ. (2012). Photon Generation in Electronic Transitions: Lasers and Nanoscopic Sources. In: Photons in Natural and Life Sciences. Springer Series in Optical Sciences, vol 157. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23749-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-23749-2_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-23748-5

  • Online ISBN: 978-3-642-23749-2

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics