Skip to main content

Motion Planning via Manifold Samples

  • Conference paper
Algorithms – ESA 2011 (ESA 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6942))

Included in the following conference series:

Abstract

We present a general and modular algorithmic framework for path planning of robots. Our framework combines geometric methods for exact and complete analysis of low-dimensional configuration spaces, together with sampling-based approaches that are appropriate for higher dimensions. We suggest taking samples that are entire low-dimensional manifolds of the configuration space. These samples capture the connectivity of the configuration space much better than isolated point samples. Geometric algorithms then provide powerful primitive operations for complete analysis of the low-dimensional manifolds. We have implemented our framework for the concrete case of a polygonal robot translating and rotating amidst polygonal obstacles. To this end, we have developed a primitive operation for the analysis of an appropriate set of manifolds using arrangements of curves of rational functions. This modular integration of several carefully engineered components has lead to a significant speedup over the PRM sampling-based algorithm, which represents an approach that is prevalent in practice.

This work has been supported in part by the 7th Framework Programme for Research of the European Commission, under FET-Open grant number 255827 (CGL—Computational Geometry Learning), by the German-Israeli Foundation (grant no. 969/07), and by the Hermann Minkowski–Minerva Center for Geometry at Tel Aviv University.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Choset, H., Burgard, W., Hutchinson, S., Kantor, G., Kavraki, L.E., Lynch, K., Thrun, S.: Principles of Robot Motion: Theory, Algorithms, and Implementation. MIT Press, Cambridge (2005)

    MATH  Google Scholar 

  2. Latombe, J.C.: Robot Motion Planning. Kluwer Academic Publishers, Norwell (1991)

    Book  MATH  Google Scholar 

  3. LaValle, S.M.: Planning Algorithms. Cambridge University Press, Cambridge (2006)

    Book  MATH  Google Scholar 

  4. Reif, J.H.: Complexity of the mover’s problem and generalizations. In: FOCS, pp. 421–427. IEEE Computer Society, Washington, DC, USA (1979)

    Google Scholar 

  5. Lozano-Perez, T.: Spatial planning: A configuration space approach. MIT AI Memo 605 (1980)

    Google Scholar 

  6. Schwartz, J.T., Sharir, M.: On the “piano movers” problem: II. General techniques for computing topological properties of real algebraic manifolds. Advances in Applied Mathematics 4(3), 298–351 (1983)

    MATH  Google Scholar 

  7. Basu, S., Pollack, R., Roy, M.F.: Algorithms in Real Algebraic Geometry. Algorithms and Computation in Mathematics. Springer, Heidelberg (2003)

    MATH  Google Scholar 

  8. Canny, J.F.: Complexity of Robot Motion Planning (ACM Doctoral Dissertation Award). MIT Press, Cambridge (1988)

    Google Scholar 

  9. Chazelle, B., Edelsbrunner, H., Guibas, L.J., Sharir, M.: A singly exponential stratification scheme for real semi-algebraic varieties and its applications. Theoretical Computer Science 84(1), 77–105 (1991)

    Article  MATH  Google Scholar 

  10. Aronov, B., Sharir, M.: On translational motion planning of a convex polyhedron in 3-space. SIAM J. Comput. 26(6), 1785–1803 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  11. Avnaim, F., Boissonnat, J., Faverjon, B.: A practical exact motion planning algorithm for polygonal object amidst polygonal obstacles. In: Boissonnat, J.-D., Laumond, J.-P. (eds.) Geometry and Robotics. LNCS, vol. 391, pp. 67–86. Springer, Heidelberg (1989)

    Chapter  Google Scholar 

  12. Halperin, D., Sharir, M.: A near-quadratic algorithm for planning the motion of a polygon in a polygonal environment. Disc. Comput. Geom. 16(2), 121–134 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  13. Schwartz, J.T., Sharir, M.: On the “piano movers” problem: I. The case of a two-dimensional rigid polygonal body moving amidst polygonal barriers. Commun. Pure appl. Math. 35, 345–398 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  14. Sharir, M.: Algorithmic Motion Planning. In: Handbook of Discrete and Computational Geometry, 2nd edn., CRC Press, Inc., Boca Raton (2004)

    Google Scholar 

  15. Fogel, E., Halperin, D.: Exact and efficient construction of Minkowski sums of convex polyhedra with applications. CAD 39(11), 929–940 (2007)

    MATH  Google Scholar 

  16. Hachenberger, P.: Exact Minkowksi sums of polyhedra and exact and efficient decomposition of polyhedra into convex pieces. Algorithmica 55(2), 329–345 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  17. Wein, R.: Exact and efficient construction of planar minkowski sums using the convolution method. In: Azar, Y., Erlebach, T. (eds.) ESA 2006. LNCS, vol. 4168, pp. 829–840. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  18. Kavraki, L.E., Kolountzakis, M.N., Latombe, J.C.: Analysis of probabilistic roadmaps for path planning. IEEE Trans. Robot. Automat. 14(1), 166–171 (1998)

    Article  Google Scholar 

  19. Kuffner, J.J., Lavalle, S.M.: RRT-Connect: An efficient approach to single-query path planning. In: ICRA, pp. 995–1001. IEEE, Los Alamitos (2000)

    Google Scholar 

  20. Ladd, A.M., Kavraki, L.E.: Generalizing the analysis of PRM. In: ICRA, pp. 2120–2125. IEEE, Los Alamitos (2002)

    Google Scholar 

  21. Hirsch, S., Halperin, D.: Hybrid motion planning: Coordinating two discs moving among polygonal obstacles in the plane. In: WAFR 2002, pp. 225–241 (2002)

    Google Scholar 

  22. Zhang, L., Kim, Y.J., Manocha, D.: A hybrid approach for complete motion planning. In: IROS, pp. 7–14 (2007)

    Google Scholar 

  23. De Berg, M., Cheong, O., van Kreveld, M., Overmars, M.: Computational Geometry: Algorithms and Applications. Springer, Heidelberg (2008)

    Book  MATH  Google Scholar 

  24. Lien, J.M.: Hybrid motion planning using Minkowski sums. In: RSS 2008 (2008)

    Google Scholar 

  25. Yang, J., Sacks, E.: RRT path planner with 3 DOF local planner. In: ICRA, pp. 145–149. IEEE, Los Alamitos (2006)

    Google Scholar 

  26. Salzman, O., Hemmer, M., Raveh, B., Halperin, D.: Motion planning via manifold samples. In: arXiv:1107.0803 (2011)

    Google Scholar 

  27. Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Addison-Wesley Professional, Reading (2001)

    Google Scholar 

  28. The CGAL Project: CGAL User and Reference Manual. 3.7 edn. CGAL Editorial Board (2010), http://www.cgal.org/

  29. Canny, J., Donald, B., Ressler, E.K.: A rational rotation method for robust geometric algorithms. In: SoCG 1992, pp. 251–260. ACM, New York (1992)

    Google Scholar 

  30. Austern, M.H.: Generic Programming and the STL. Addison-Wesley, Reading (1998)

    Google Scholar 

  31. Berberich, E., Hemmer, M., Kerber, M.: A generic algebraic kernel for non-linear geometric applications. In: SoCG 2011 (2011)

    Google Scholar 

  32. Plaku, E., Bekris, K.E., Kavraki, L.E.: OOPS for motion planning: An online open-source programming system. In: ICRA, pp. 3711–3716. IEEE, Los Alamitos (April 2007)

    Google Scholar 

  33. Mayer, N., Fogel, E., Halperin, D.: Fast and robust retrieval of Minkowski sums of rotating convex polyhedra in 3-space. In: SPM, pp. 1–10 (2010)

    Google Scholar 

  34. Berberich, E., Fogel, E., Halperin, D., Mehlhorn, K., Wein, R.: Arrangements on parametric surfaces I: General framework and infrastructure. Mathematics in Computer Science 4(1), 45–66 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Salzman, O., Hemmer, M., Raveh, B., Halperin, D. (2011). Motion Planning via Manifold Samples. In: Demetrescu, C., Halldórsson, M.M. (eds) Algorithms – ESA 2011. ESA 2011. Lecture Notes in Computer Science, vol 6942. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23719-5_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-23719-5_42

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-23718-8

  • Online ISBN: 978-3-642-23719-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics