Skip to main content

A Bio-Inspired Image Coder with Temporal Scalability

  • Conference paper
Advanced Concepts for Intelligent Vision Systems (ACIVS 2011)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 6915))

Abstract

We present a novel bio-inspired and dynamic coding scheme for static images. Our coder aims at reproducing the main steps of the visual stimulus processing in the mammalian retina taking into account its time behavior. The main novelty of this work is to show how to exploit the time behavior of the retina cells to ensure, in a simple way, scalability and bit allocation. To do so, our main source of inspiration will be the biologically plausible retina model called Virtual Retina. Following a similar structure, our model has two stages. The first stage is an image transform which is performed by the outer layers in the retina. Here it is modelled by filtering the image with a bank of difference of Gaussians with time-delays. The second stage is a time-dependent analog-to-digital conversion which is performed by the inner layers in the retina. Thanks to its conception, our coder enables scalability and bit allocation across time. Also, our decoded images do not show annoying artefacts such as ringing and block effects. As a whole, this article shows how to capture the main properties of a biological system, here the retina, in order to design a new efficient coder.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Antonini, M., Barlaud, M., Mathieu, P., Daubechies, I.: Image coding using wavelet transform. IEEE Transactions on Image Processing (1992)

    Google Scholar 

  2. Burt, P., Adelson, E.: The Laplacian pyramid as a compact image code. IEEE Transactions on Communications 31(4), 532–540 (1983)

    Article  Google Scholar 

  3. Christopoulos, C., Skodras, A., Ebrahimi, T.: The JPEG2000 still image coding system: An overview. IEEE Transactions on Consumer Electronics 16(4), 1103–1127 (2000)

    Article  Google Scholar 

  4. Clark, A., et al.: Electrical picture-transmitting system. US Patent assigned to AT& T (1928)

    Google Scholar 

  5. Crowley, J., Stern, R.: Fast computation of the difference of low-pass transform. IEEE Transactions on Pattern Analysis and Machine Intelligence (2), 212–222 (2009)

    Google Scholar 

  6. Field, D.: What is the goal of sensory coding? Neural Computation 6(4), 559–601 (1994)

    Article  Google Scholar 

  7. Gollisch, T., Meister, M.: Eye smarter than scientists believed: Neural computations in circuits of the retina. Neuron. 65(2), 150–164 (2010)

    Article  Google Scholar 

  8. Graham, D., Field, D.: Efficient coding of natural images. New Encyclopedia of Neuroscience (2007)

    Google Scholar 

  9. Linares-Barranco, A., Gomez-Rodriguez, F., Jimenez-Fernandez, A., Delbruck, T., Lichtensteiner, P.: Using FPGA for visuo-motor control with a silicon retina and a humanoid robot. In: Proceedings of ISCAS 2007, pp. 1192–1195. IEEE, Los Alamitos (2007)

    Google Scholar 

  10. Masmoudi, K., Antonini, M., Kornprobst, P.: Another look at the retina as an image scalar quantizer. In: Proceedings of ISCAS 2010, pp. 3076–3079. IEEE, Los Alamitos (2010)

    Google Scholar 

  11. Masmoudi, K., Antonini, M., Kornprobst, P.: Exact reconstruction of the rank order coding using frames theory. ArXiv e-prints (2011), http://arxiv.org/abs/1106.1975v1

  12. Masmoudi, K., Antonini, M., Kornprobst, P., Perrinet, L.: A novel bio-inspired static image compression scheme for noisy data transmission over low-bandwidth channels. In: Proceedings of ICASSP, pp. 3506–3509. IEEE, Los Alamitos (2010)

    Google Scholar 

  13. Ouerhani, N., Bracamonte, J., Hugli, H., Ansorge, M., Pellandini, F.: Adaptive color image compression based on visual attention. In: Proceedings of IEEE ICIAP, pp. 416–421. IEEE, Los Alamitos (2002)

    Google Scholar 

  14. Perrinet, L.: Sparse Spike Coding: applications of Neuroscience to the processing of natural images. In: Proceedings of SPIE, the International Society for Optical Engineering, number ISSN (2008)

    Google Scholar 

  15. Pillow, J., Shlens, J., Paninski, L., Sher, A., Litke, A., Chichilnisky, E., Simoncelli, E.: Spatio-temporal correlations and visual signalling in a complete neuronal population. Nature 454(7207), 995–999 (2008)

    Article  Google Scholar 

  16. Rodieck, R.: Quantitative analysis of the cat retinal ganglion cells response to visual stimuli. Vision Research 5(11), 583–601 (1965)

    Article  Google Scholar 

  17. Sterling, P., Cohen, E., Smith, R., Tsukamoto, Y.: Retinal circuits for daylight: why ballplayers don’t wear shades. Analysis and Modeling of Neural Systems, 143–162 (1992)

    Google Scholar 

  18. Taubman, D.: High performance scalable image compression with ebcot. IEEE Transactions on Image Processing 9(7), 1158–1170 (2000)

    Article  Google Scholar 

  19. Thorpe, S., Gautrais, J.: Rank order coding. Computational Neuroscience: Trends in Research 13, 113–119 (1998)

    Article  Google Scholar 

  20. Van Rullen, R., Thorpe, S.: Rate coding versus temporal order coding: What the retinal ganglion cells tell the visual cortex. Neural Computation 13, 1255–1283 (2001)

    Article  MATH  Google Scholar 

  21. Wang, Z., Bovik, A., Sheikh, H., Simoncelli, E.: Image quality assessment: From error visibility to structural similarity. IEEE Transactions on Image Processing 13(4), 600–612 (2004), http://www.cns.nyu.edu/~zwang/

    Article  Google Scholar 

  22. Gerstner, W., Kistler, W.: Spiking Neuron Models: Single Neurons, Populations, Plasticity. Cambridge University Press, Cambridge (2002)

    Book  MATH  Google Scholar 

  23. Wohrer, A., Kornprobst, P.: Virtual retina: A biological retina model and simulator, with contrast gain control. Journal of Computational Neuroscience 26(2), 219–249 (2009)

    Article  MathSciNet  Google Scholar 

  24. Wohrer, A., Kornprobst, P., Antonini, M.: Retinal filtering and image reconstruction. Research Report RR-6960, INRIA (2009), http://hal.inria.fr/inria-00394547/en/

  25. Zhang, Y., Ghodrati, A., Brooks, D.: An analytical comparison of three spatio-temporal regularization methods for dynamic linear inverse problems in a common statistical framework. Inverse Problems 21, 357 (2005)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Masmoudi, K., Antonini, M., Kornprobst, P. (2011). A Bio-Inspired Image Coder with Temporal Scalability. In: Blanc-Talon, J., Kleihorst, R., Philips, W., Popescu, D., Scheunders, P. (eds) Advanced Concepts for Intelligent Vision Systems. ACIVS 2011. Lecture Notes in Computer Science, vol 6915. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23687-7_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-23687-7_41

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-23686-0

  • Online ISBN: 978-3-642-23687-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics