Skip to main content

A New Anticorrelation-Based Spectral Clustering Formulation

  • Conference paper
Book cover Advanced Concepts for Intelligent Vision Systems (ACIVS 2011)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 6915))

  • 2150 Accesses

Abstract

This paper introduces the Spectral Clustering Equivalence (SCE) algorithm which is intended to be an alternative to spectral clustering (SC) with the objective to improve both speed and quality of segmentation. Instead of solving for the spectral decomposition of a similarity matrix as in SC, SCE converts the similarity matrix to a column-centered dissimilarity matrix and searches for a pair of the most anticorrelated columns. The orthogonal complement to these columns is then used to create an output feature vector (analogous to eigenvectors obtained via SC), which is used to partition the data into discrete clusters. We demonstrate the performance of SCE on a number of artificial and real datasets by comparing its classification and image segmentation results with those returned by kernel-PCA and Normalized Cuts algorithm. The column-wise processing allows the applicability of SCE to Very Large Scale problems and asymmetric datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Rodgers, J.L., Nicewander, W.A.: Thirteen Ways to Look at the Correlation Coefficient. The American Statistician 42, 59–66 (1988)

    Article  Google Scholar 

  2. Tran, H.T., Romanov, D.A., Levis, R.J.: Control Goal Selection Through Anticorrelation Analysis in the Detection Space. Journal of Physical Chemistry A 110, 10558–10563 (2006)

    Article  Google Scholar 

  3. Cevher, V., Duarte, M.F., Hegde, C., Baraniuk, R.G.: Sparse Signal Recovery Using Markov Random Fields. Neural Information Processing Systems (NIPS), 257–264 (2008)

    Google Scholar 

  4. Shi, J., Malik, J.: Normalized Cuts and Image Segmentation. In: Computer Vision and Pattern Recognition (CVPR), pp. 731–737 (1997)

    Google Scholar 

  5. Perona, P., Freeman, W.T.: A factorization approach to grouping. In: Burkhardt, H.-J., Neumann, B. (eds.) ECCV 1998. LNCS, vol. 1406, pp. 655–670. Springer, Heidelberg (1998)

    Google Scholar 

  6. Weiss, Y.: Segmentation Using Eigenvectors: A Unifying View. In: International Conference on Computer Vision, ICCV (1999)

    Google Scholar 

  7. Shi, J., Malik, J.: Normalized Cuts and Image Segmentation. IEEE Trans. on Pattern Analysis and Machine Intelligence (TPAMI) 22, 888–905 (2000)

    Article  Google Scholar 

  8. Ng, A.Y., Jordan, M.I., Weiss, Y.: On Spectral Clustering: Analysis and an Algorithm. Neural Information Processing Systems (NIPS) 14, 849–856 (2001)

    Google Scholar 

  9. Roth, V., Laub, J., Kawanabe, M., Buhmann, J.M.: Optimal Cluster Preserving Embedding of Nonmetric Proximity Data. IEEE Trans. on Pattern Analysis and Machine Intelligence (TPAMI) 25, 1540–1551 (2003)

    Article  Google Scholar 

  10. Constantine, A.G., Gower, J.C.: Graphical Representation of Asymmetric Matrices. Journal of the Royal Statistical Society. Series C (Applied Statistics) 27, 297–304 (1978)

    MATH  Google Scholar 

  11. Jolliffe, I.T.: Principal Component Analysis. Springer, Heidelberg (2002)

    MATH  Google Scholar 

  12. Anderberg, M.R.: Cluster Analysis for Applications. Academic Press Inc., London (1973)

    MATH  Google Scholar 

  13. Zheng, N., Xue, J.: Statistical Learning and Pattern Analysis for Image and Video Processing. Springer-Verlag London Limited (2009)

    Google Scholar 

  14. Laub, J., Roth, V., Buhmann, J.M., Müller, K.-R.: On the Information and Representation of Non-Euclidean Pairwise Data. Pattern Recognition 39, 1815–1826 (2006)

    Article  MATH  Google Scholar 

  15. Alzate, C., Suykens, J.A.K.: Multiway Spectral Clustering with Out-of- Sample Extensions Through Weighted Kernel PCA. IEEE Trans. on Pattern Analysis and Machine Intelligence (TPAMI) 32, 335–347 (2010)

    Article  Google Scholar 

  16. Monteiro, F.C., Campilho, A.C.: Spectral Methods in Image Segmentation: A Combined Approach. In: Marques, J.S., Pérez de la Blanca, N., Pina, P. (eds.) IbPRIA 2005. LNCS, vol. 3523, pp. 191–198. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  17. Srebro, N., Jaakkola, T.: Linear Dependent Dimensionality Reduction. Advances in Neural Information Processing Systems (NIPS) 16, 145–152 (2003)

    Google Scholar 

  18. Sanguinetti, G.: Dimensionality Reduction in Clustered Data Sets. IEEE Trans. on Pattern Analysis and Machine Intelligence (TPAMI) 30, 535–540 (2008)

    Article  Google Scholar 

  19. Talwalkar, A., Kumar, S., Rowley, H.: Large-Scale Manifold Learning. In: Computer Vision and Pattern Recognition, CVPR (2008)

    Google Scholar 

  20. Pękalska, E., Harol, A., Duin, R.P.W., Spillmann, B., Bunke, H.: Non-Euclidean or Non-metric Measures Can Be Informative. In: Yeung, D.-Y., Kwok, J.T., Fred, A., Roli, F., de Ridder, D. (eds.) SSPR 2006 and SPR 2006. LNCS, vol. 4109, pp. 871–880. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  21. Belabbas, M.-A., Wolfe, P.: Spectral Methods in Machine Learning and New Strategies for Very Large Datasets. Proceedings of National Academy of Sciences (PNAS) of the USA 106, 369–374 (2009)

    Article  Google Scholar 

  22. Chang, H., Yeung, D.-Y.: Robust Path-based Spectral Clustering. Pattern Recognition 41, 191–203 (2008)

    Article  MATH  Google Scholar 

  23. Fowlkes, C., Belongie, S., Chung, F., Malik, J.: Spectral Grouping Using the Nyström Method. IEEE Trans. on Pattern Analysis and Machine Intelligence (TPAMI) 26, 214–225 (2004)

    Article  Google Scholar 

  24. Tung, F., Wong, A., Clausi, D.A.: Enabling Scalable Spectral Clustering for Image Segmentation. Pattern Recognition 43, 4069–4076 (2010)

    Article  MATH  Google Scholar 

  25. Chen, W.-Y., Song, Y., Bai, H., Lin, C.-J., Chang, E.Y.: Parallel Spectral Clustering in Distributed Systems. IEEE Trans. on Pattern Analysis and Machine Intelligence (TPAMI) 33, 568–586 (2010)

    Article  Google Scholar 

  26. Cour, T., Yu, S. and Shi, J.: Ncut demo software, http://www.cis.upenn.edu/~jshi/software

  27. Schölkopf, B., Smola, A.J.: Learning with Kernels. MIT Press, Cambridge (2002)

    MATH  Google Scholar 

  28. Stewart, G.W.: Matrix Algorithms, Eigensystems, vol. II. SIAM, Philadelphia (2001)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dietlmeier, J., Ghita, O., Whelan, P.F. (2011). A New Anticorrelation-Based Spectral Clustering Formulation. In: Blanc-Talon, J., Kleihorst, R., Philips, W., Popescu, D., Scheunders, P. (eds) Advanced Concepts for Intelligent Vision Systems. ACIVS 2011. Lecture Notes in Computer Science, vol 6915. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23687-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-23687-7_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-23686-0

  • Online ISBN: 978-3-642-23687-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics