Skip to main content

Robust Visual Odometry Using Uncertainty Models

  • Conference paper
Advanced Concepts for Intelligent Vision Systems (ACIVS 2011)

Abstract

In dense, urban environments, GPS by itself cannot be relied on to provide accurate positioning information. Signal reception issues (e.g. occlusion, multi-path effects) often prevent the GPS receiver from getting a positional lock, causing holes in the absolute positioning data. In order to keep assisting the driver, other sensors are required to track the vehicle motion during these periods of GPS disturbance. In this paper, we propose a novel method to use a single on-board consumer-grade camera to estimate the relative vehicle motion. The method is based on the tracking of ground plane features, taking into account the uncertainty on their backprojection as well as the uncertainty on the vehicle motion. A Hough-like parameter space vote is employed to extract motion parameters from the uncertainty models. The method is easy to calibrate and designed to be robust to outliers and bad feature quality. Preliminary testing shows good accuracy and reliability, with a positional estimate within 2 metres for a 400 metre elapsed distance. The effects of inaccurate calibration are examined using artificial datasets, suggesting a self-calibrating system may be possible in future work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amidi, O., Kanade, T., Miller, J.: Vision-based autonomus helicopter research at cmu. In: Proc. of Heli Japan 1998 (1998)

    Google Scholar 

  2. Azuma, T., Sugimoto, S., Okutomi, M.: Egomotion estimation using planar and non-planar constraints. In: Intelligent Vehicles Symposium (IV), pp. 855–862. IEEE, Los Alamitos (2010)

    Google Scholar 

  3. Bouguet, J.: Visual Methods for Three-Dimensional Modeling. Ph.D. thesis, California Institute of Technology (May 1999)

    Google Scholar 

  4. Campbell, J., Sukthankar, R., Nourbakhsh, I., Pahwa, A.: A robust visual odometry and precipice detection system using consumer-grade monocular vision. In: Proc. of IEEE Int. Conf on Robotics and Automation (ICRA) 2005, pp. 3421–3427 (2005)

    Google Scholar 

  5. Cheng, Y., Maimone, M., Matthies, L.: Visual odometry on the mars exploration rovers. IEEE Robotics and Automation Magazine 13(2) (2006)

    Google Scholar 

  6. Comport, A., Malis, E., Rives, P.: Accurate quadrifocal tracking for robust 3d visual odometry. In: Proc. of IEEE Int. Conf. on Robotics and Automation (ICRA) 2007, pp. 40–45 (2007)

    Google Scholar 

  7. Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision. Cambridge University Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  8. Kitt, B., Geiger, A., Lategahn, H.: Visual odometry based on stereo image sequences with ransac-based outlier rejection scheme. In: Intelligent Vehicles Symposium (IV), pp. 486–492. IEEE, Los Alamitos (2010)

    Google Scholar 

  9. Konolige, K., Agrawal, M., Sol, J.: Large-scale visual odometry for rough terrain. In: Int. Symposium on Research in Robotics (2007)

    Google Scholar 

  10. Levin, A., Szeliski, R.: Visual odometry and map correlation. In: Proc. of IEEE Int. Conf. on Computer Vision and Pattern Recognition 2004, vol. 1-I, pp. 611–618 (2004)

    Google Scholar 

  11. Marks, R., Wang, H., Lee, M., Rock, S.: Automatic visual station keeping of an underwater robot. In: Proc. of IEEE Oceans 1994, pp. 137–142 (1994)

    Google Scholar 

  12. Mouragnon, E., Lhuillier, M., Dhome, M., Dekeyser, F., Sayd, P.: Generic and real-time structure from motion using local bundle adjustment. Image and Vision Computing 27(8) (2009)

    Google Scholar 

  13. Negahdaripour, S., Horn, B.: Direct passive navigation. IEEE Transactions on Pattern Analysis and Machine Intelligence 9(1) (1987)

    Google Scholar 

  14. Nistér, D.: An efficient solution to the five-point relative point problem. IEEE Transactions on Pattern Analysis and Machine Intelligence 26(6) (2004)

    Google Scholar 

  15. Nistér, D., Naroditsky, O., Bergen, J.: Visual odometry for ground vehicle applications. Journal of Field Robotics 23 (2006)

    Google Scholar 

  16. Obdržálek, S., Matas, J.: A voting strategy for visual ego-motion from stereo. In: Intelligent Vehicles Symposium (IV), pp. 382–387. IEEE, Los Alamitos (2010)

    Google Scholar 

  17. Scaramuzza, D., Fraundorfer, F., Siegwart, R.: Real-time monocular visual odometry for on-road vehicles with 1-point ransac. In: Proc. of IEEE Int. Conf on Robotics and Automation (ICRA) 2009, pp. 4293–4299 (2009)

    Google Scholar 

  18. Tardif, J.-P., Pavlidis, Y., Daniilidis, K.: Monocular visual odometry in urban environments using an omnidrectional camera. In: Proc. of IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS) 2008, pp. 2531–2538 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Van Hamme, D., Veelaert, P., Philips, W. (2011). Robust Visual Odometry Using Uncertainty Models. In: Blanc-Talon, J., Kleihorst, R., Philips, W., Popescu, D., Scheunders, P. (eds) Advanced Concepts for Intelligent Vision Systems. ACIVS 2011. Lecture Notes in Computer Science, vol 6915. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23687-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-23687-7_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-23686-0

  • Online ISBN: 978-3-642-23687-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics