Skip to main content

Self-Organization at the Frictional Interface

  • Chapter
  • First Online:
Green Tribology

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

Despite the fact that self-organization during friction has received relatively little attention of the tribologists so far, it has a potential for the creation of self-healing and self-lubricating materials, which are of importance for the green or environment-friendly tribology. The principles of the thermodynamics of irreversible processes and of the nonlinear theory of dynamical systems are used to investigate the formation of spatial and temporal structures during friction. The transition to the self-organized state with low friction and wear occurs through the destabilization of the steady-state (stationary) sliding. The criterion for the destabilization is discussed and examples like formation of a protective film and slip waves are discussed. Some cases like running-in stage, elastic structures, and Turing pattern formation as evidences of self-organization are studied. A special self-healing mechanism may be embedded into material by coupling corresponding required forces. The analysis provides a structure–property relationship which can be applied for the design optimization of composite self-lubricating and self-healing materials for various ecologically friendly applications and green tribology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. H. A. Abdel-Aal, Wear and irreversible entropy generation in dry sliding, Annals of University “Dunarea De Jos” Galati, Fascicle VIII, Tribology. 34–45 (2006) ISSN 1221–4590

    Google Scholar 

  2. G.G. Adams, Self-excited oscillations of the two elastic half-spaces sliding with a constant coefficient of friction. ASME J. Appl. Mech. 62, 867–872 (1995). doi:10.1115/1.2896013

    Article  MATH  Google Scholar 

  3. G.G. Adams, Steady sliding of two elastic half-spaces with friction reduction due to interface stick-slip. ASME J. Tribol. 65, 470–475 (1998)

    Google Scholar 

  4. M. Adler, J. Ferrante, A. Schilowitz, D. Yablon, F. Zypman, Self-organized criticality in nano tribology. Mater. Res Soc. 782, 111 (2004)

    Google Scholar 

  5. A. Aizawa, A. Mitsuo, S. Yamamoto, T. Sumitomo, S. Muraishic, Self-lubrication mechanism via the in situ formed lubricious oxide tribofilm. Wear 259(1–6), 708–718 (2005)

    Article  Google Scholar 

  6. P. Bak, How Nature Works: The Science of Self-Organized Criticality (Springer, New York, 1996)

    MATH  Google Scholar 

  7. J.R. Barber, Thermoelastic instabilities in the sliding of conforming solids. Proc. R. Soc. London A 312, 381–394 (1969)

    Article  Google Scholar 

  8. L.I. Bershadski, On the self-organization and concepts of wear-resistance in tribosystems. Trenie I Iznos (Russian Friction and Wear) 13, 1077–1094 (1992)

    Google Scholar 

  9. L.I. Bershadski, B.I. Kostetski, General concept in tribology. Trenie I Iznos (Russian Friction and Wear) 14, 6–18 (1993)

    Google Scholar 

  10. B. Bhushan, M. Nosonovsky, Scale effects in friction using strain gradient plasticity and dislocation-assisted sliding (microslip). Acta Mater. 51, 4331–4340 (2003). doi:10.1016/S1359-6454(03)00261-1

    Article  Google Scholar 

  11. P.J. Blau, Friction and Wear Transitions of Materials: Break-In, Run-In, Wear-In (Noyes Publications, New Jersey, 1989)

    Google Scholar 

  12. M.D. Bryant, M.M. Khonsari, F.F. Ling, On the thermodynamics of degradation. Proc. R. Soc. A 464, 2001–2014 (2008). doi:10.1098/rspa.2007.0371

    Article  MATH  Google Scholar 

  13. S.V. Buldyrev, J. Ferrante, F.R. Zypman, Dry friction avalanches: experiments and theory. Phys. Rev. E 74, 066–110 (2006). doi:10.1103/PhysRevE.74.066110

    Article  Google Scholar 

  14. N. Bushe, I.S. Gershman, Compatibility of Tribosystems, in Self-Organization During Friction. Advanced Surface-Engineered Materials and Systems Design, ed. by G.S. Fox-Rabinovich, G.E. Totten (CRC Taylor & Francis, Boca Raton, 2006), pp. 59–80

    Chapter  Google Scholar 

  15. Z. Dai, S. Yang, Q. Xue, Thermodynamic model of fretting wear. J. Nanjing Univ. Aeronaut. Astronaut. 32, 125–131 (2000)

    Google Scholar 

  16. S.R. De Groot, P. Mazur, Non-Equilibrium Thermodynamics (Interscience, New York, 1962)

    Google Scholar 

  17. K.L. Doelling, F.F. Ling, M.D. Bryant, B.P. Heilman, An experimental study of the correlation between wear and entropy flow in machinery components. J. Appl. Phys. 88, 2999–3003 (2000)

    Article  Google Scholar 

  18. C. Donnet, A. Erdemir, Historical developments and new trends in tribological and solid lubricant coatings. Surf. Coat. Technol. 180, 76–84 (2004)

    Article  Google Scholar 

  19. V. Dufiet, J. Boissonade, Conventional and nonconventional turing patterns. J. Chem. Phys. 96, 664–673 (1991)

    Article  Google Scholar 

  20. V. Dufiet, J. Boissonade, Numerical studies of turing patterns selection in a two-dimensional system. Physician A 188, 158–171 (1992)

    Article  Google Scholar 

  21. A. Erdemir, R.A. Erck, J. Robles, Relationship of hertzian contact pressure to friction behavior of selflubricating boric acid films. Surf. Coat. Technol. 49, 435–438 (1991)

    Article  Google Scholar 

  22. A. Erdemir, C. Bindal, C. Zuiker, E. Savrun, Tribology of naturally occurring boric acid films on boron carbides. Surf. Coat. Technol. 86–87, 507–510 (1996)

    Article  Google Scholar 

  23. A. Erdemir, in Modern Tribology Handbook, ed. by B. Bhushan, vol II (CRC, Boca Raton, 2001)

    Google Scholar 

  24. P. Fleurquin, H. Fort, M. Kornbluth, R. Sandler, M. Segall, F. Zypman, Negentropy generation and fractality in dry friction of polished surfaces. Entropy 12, 480–489 (2010)

    Article  Google Scholar 

  25. G.S. Fox-Rabinovich, G.E. Totten (eds.), Self-Organization during Friction (CRC Press, FL, 2006)

    Google Scholar 

  26. G.S. Fox-Rabinovich, S.C. Veldhuis, A.I. Kovalev, D.L. Wainstein, I.S. Gershman, S. Korshunov, L.S. Shuster, J.L. Endrino, Features of self-organization in ion modified nanocrystalline plasma vapor deposited AlTiN coatings under severe tribological conditions. J. Appl. Phys. 102, 74–305 (2007). doi:10.1063/1.2785947

    Article  Google Scholar 

  27. D.N. Garkunov, Triboengineering (Wear and Non-Deterioration) (Moscow Agricultural Academy Press, Moscow, 2000) (in Russian)

    Google Scholar 

  28. D.N. Garkunov, Scientific Discoveries in Tribotechnology (MSHA, Moscow, 2004) (in Russian)

    Google Scholar 

  29. I.S. Gershman, N. Bushe, Elements of Thermodynamics of Self-Organization during Friction, in Self-Organization during Friction. Advanced Surface-Engineered Materials and Systems Design, ed. by G.S. Fox-Rabinovich, G.E. Totten (CRC Taylor & Francis, Boca Raton, 2006), pp. 13–58

    Google Scholar 

  30. I.S. Gershman, Formation of Secondary Structures and Self-Organization Process of Tribosystems during Friction with the Collection of Electric Current, in Self-Organization during Friction. Advanced Surface-Engineered Materials and Systems Design, ed. by G.S. Fox-Rabinovich, G.E. Totten (CRC Taylor & Francis, Boca Raton, FL, 2006), p. 197

    Google Scholar 

  31. H. Haken, Synergetics. An Introduction. Non equilibrium Phase Transitions in Physics, Chemistry and Biology, 3rd edn. (Springer-Verlag, New York, 1983)

    Google Scholar 

  32. F. Ilie, C. Tita, Investigation of layers formed through selective transfer with atomic force microscopy. Paper presented in ROTRIB’07, 10th international conference on tribology, Bucharest, Romania, 2007

    Google Scholar 

  33. Q. Jun, A. Linan, P.J. Blau, Sliding friction and wear characteristics of Al2O3-Al nanocomposites. STLE/ASME international joint tribology conference, ASME, New York, 2006 (IJTC 2006, Ser. 2006)

    Google Scholar 

  34. E. Kagan, Turing systems, entropy, and kinetic models for self-healing surfaces. Entropy 12, 554–569 (2010)

    Article  Google Scholar 

  35. B.E. Klamecki, Wear—an entropy production model. Wear 58, 325–330 (1980)

    Article  Google Scholar 

  36. B.E. Klamecki, A thermodynamic model of friction. Wear 63, 113–120 (1980)

    Article  Google Scholar 

  37. B.E. Klamecki, Energy dissipation in sliding. Wear 77, 115–128 (1982)

    Article  Google Scholar 

  38. B.E. Klamecki, An entropy-based model of plastic deformation energy dissipation in sliding. Wear 96, 319–329 (1984)

    Article  Google Scholar 

  39. T Leppänen, Computational studies of pattern formation in turing systems, Dissertation for the degree of Doctor of science in technology, Helsinki University of Technology (2004)

    Google Scholar 

  40. J.F. Lin, H.Y. Chu, Analysis of the bénard cell-like worn surface type occurred during oil-lubricated sliding contact. Proceedings of the ASME/STLE 2009 international joint tribology conference, IJTC2009, Memphis, Tennessee (2009)

    Google Scholar 

  41. M.R. Lovell, M.A. Kabir, P.L. Menezes, C.F. Higgs III, Influence of boric acid additive size on green lubricant performance, Phil. Trans. R. Soc. A 368(1929), 4851–4868 (2010)

    Article  Google Scholar 

  42. S. Maegawa, K. Nakano, Mechanism of stick-slip associated with Schallamach waves. Wear 268, 924–930 (2010)

    Article  Google Scholar 

  43. P.H. Mayrhofera, C. Mitterer, J.G. Wen, J.E. Greene, I. Petrov, Self-organized nanocolumnar structure in superhard TiB2 thin films. Appl. Phys. Lett. 86, 131909 (2005)

    Article  Google Scholar 

  44. J.A.C. Martins, J. Guimara˜es, L.O. Faria, Dynamic surface solutions in linear elasticity and viscoelasticity with frictional boundary conditions. ASME J. Vib. Acoust. 117, 445–451 (1995)

    Article  Google Scholar 

  45. P.H. Mayrhofera, C. Mitterera, L. Hultmanb, H. Clemensa, Microstructural design of hard coatings. Prog. Mater. Sci. 51(8), 1032–1114 (2006)

    Article  Google Scholar 

  46. P.L. Menezes, Kishore, S.V. Kailas, Studies on friction and transfer layer using inclined scratch. Tribol. Int. 39(2), 175–183 (2006)

    Article  Google Scholar 

  47. V. Mortazavi, M. Nosonovsky, In Friction-induced pattern-Formation and Turing systems. Langmuir. 27(8), 4772–4779 (2011a)

    Article  Google Scholar 

  48. V. Mortazavi, M. Nosonovsky, Wear-induced microtopography evolution and wetting properties of self-cleaning, lubricating and healing surfaces. J. Adhes. Sci. Technol. 25(12), 1337–1359 (2011b)

    Article  Google Scholar 

  49. J.D. Murray, Mathematical Biology, 2nd edn. (Springer Verlag, Berlin, 1989)

    MATH  Google Scholar 

  50. G. Nicolis, I. Prigogine, Self-Organization in Nonequilibrium Systems (Wiley, New York, 1977)

    MATH  Google Scholar 

  51. M. Nosonovsky, Self-organization at the frictional interface for green tribology. Phil. Trans. R. Soc. A 368(1929), 4755–4774 (2010a)

    Article  MathSciNet  Google Scholar 

  52. M. Nosonovsky, Entropy in tribology: in search of applications. Entropy 12(6), 1345–1390 (2010b), doi: 10.3390/e12061345

    Article  Google Scholar 

  53. M. Nosonovsky, G.G. Adams, Dilatational and shear waves induced by the frictional sliding of two elastic half-spaces. Int. J. Eng. Sci. 39, 1257–1269 (2001). doi:10.1016/S0020-7225(00)00085-9

    Article  Google Scholar 

  54. M. Nosonovsky, G.G. Adams, Vibration and stability of frictional sliding of two elastic bodies with a wavy contact interface. ASME J. Appl. Mech. 71, 154–300 (2004). doi:10.1115/1.1653684

    Article  MATH  Google Scholar 

  55. M. Nosonovsky, B. Bhushan, Thermodynamics of surface degradation, self-organization and self-healing for biomimetic surfaces. Phil. Trans. R. Soc. A 367, 1607–1627 (2009)

    Article  Google Scholar 

  56. M. Nosonovsky, B. Bhushan, Surface self-organization: from wear to self-healing in biological and technical surfaces. Appl. Surf. Sci. 256, 3982–3987 (2010)

    Article  Google Scholar 

  57. M. Nosonovsky, R. Amano, J.M. Lucci, P.K. Rohatgi, Physical chemistry of self-organization and self-healing in metals. Phys. Chem. Chem. Phys. 11, 9530–9536 (2009)

    Article  Google Scholar 

  58. I. Prigogine, Thermodynamics of Irreversible Processes (Willey, New York, 1968)

    Google Scholar 

  59. I. Prigogine, From Being to Becoming (WH Freeman and Company, San Francisco, CA, 1980)

    Google Scholar 

  60. I. Prigogine, I. Stengers, Order Out of Chaos (Bantam, New York, 1984)

    Google Scholar 

  61. K. Ranjith, J.R. Rice, Slip dynamics at a dissimilar material interface. J. Mech. Phys. Solids 49, 341–361 (2001)

    Article  MATH  Google Scholar 

  62. L. Rapoport, N. Fleischer, R. Tenne, Fullerene-like WS2 nanoparticles: superior lubricants for harsh conditions. Adv. Mater. 15, 651–655 (2003)

    Article  Google Scholar 

  63. I.L. Singer, S.D. Dvorak, K.J. Wahl, T.W. Scharf, Role of third bodies in friction and wear of protective coatings. J. Vac. Sci. Technol. A 21, 232–240 (2003)

    Article  Google Scholar 

  64. L.A. Sosnovskiy, S.S. Sherbakov, Surprizes of Tribo-Fatigue (Magic Book, Minsk, 2009)

    Google Scholar 

  65. A.M. Turing, The chemical basis of morphogenesis. Phil. Trans. R. Soc. B 237, 37–72 (1952)

    Article  Google Scholar 

  66. G. Wu, F. Gao, M. Kaltchev, J. Gutow, J.K. Mowlem, W.C. Schramm, P.V. Kotvis, W.T. Tysoe, An investigation of the tribological properties of thin KCl films on iron in ultrahigh vacuum: modeling the extreme-pressure lubricating interface. Wear 252, 595–606 (2002)

    Article  Google Scholar 

  67. A. Zmitrowicz, A thermodynamical model of contact, friction, and wear. Wear 114, 135–221 (1987)

    Article  Google Scholar 

  68. S. Zwaag, van der, Self-healing behaviour in man-made engineering materials: bioinspired but taking into account their intrinsic character. Phil. Trans. R. Soc. A 367, 1689–1704 (2009)

    Article  Google Scholar 

  69. F. Zypman, J. Ferrante, M. Jansen, K. Scanlon, P. Abel, Evidence of self-organized criticality in dry sliding friction. J. Phys. Condens. Matter. 15, L191–L196 (2003). doi:10.1088/0953-8984/15/12/101

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support of the University of Wisconsin-Milwaukee (UWM) Research Growth Initiative (RGI) and UWM Research Foundation Bradley Catalyst grants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Nosonovsky .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Nosonovsky, M., Mortazavi, V. (2012). Self-Organization at the Frictional Interface. In: Nosonovsky, M., Bhushan, B. (eds) Green Tribology. Green Energy and Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23681-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-23681-5_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-23680-8

  • Online ISBN: 978-3-642-23681-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics