Skip to main content

Lotus Versus Rose: Biomimetic Surface Effects

  • Chapter
  • First Online:
Green Tribology

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

The Lotus and rose petal effects have become a subject of active investigation by scientists, as they involve different modes of the interaction of wetting with roughness. The contact angle (CA) and CA hysteresis are two parameters, which characterize the hydrophobicity/philicity of a solid surface. Lotus-effect surfaces have a high CA and low CA hysteresis. However, it was found recently that a high CA can coexist with strong adhesion between water and a solid surface (and high CA hysteresis) in the case of the so-called “rose petal effect.” It is clear now that wetting cannot be characterized by only the CA, since several modes or regimes of wetting of a rough surface can exist, including the Wenzel, Cassie, Lotus, and Petal regimes. This is due to the hierarchical structure of rough surfaces built of micro- and nanoscale roughness, so that a composite interface can exist at the microscale, while a homogeneous interface can exist at the nanoscale or vice versa. The understanding of the wetting of rough surfaces is important in order to design non-adhesive surfaces for various applications, including environmental.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. B. Bhushan, Principles and Applications of Tribology (Wiley, New York, 1999)

    Google Scholar 

  2. B. Bhushan, Introduction to Tribology (Wiley, New York, 2002)

    Google Scholar 

  3. B. Bhushan, Springer Handbook of Nanotechnology, 3rd edn. (Springer, Heidelberg, 2010)

    Book  Google Scholar 

  4. B. Bhushan, E.K. Her, Fabrication of superhydrophobic surfaces with high and low adhesion inspired from rose petal. Langmuir 26, 8207–8217 (2010)

    Article  Google Scholar 

  5. B. Bhushan, Y.C. Jung, Natural and biomimetic artificial surfaces for superhydrophobicity, self-cleaning, low adhesion, and drag reduction. Prog. Mater. Sci. 56, 1–108 (2011)

    Article  Google Scholar 

  6. B. Bhushan, M. Nosonovsky, The rose petal effect and the modes of superhydrophobicity. Phil. Trans R. Soc. A 368, 4713–4728 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  7. E. Bormashenko, Y. Bormashenko, T. Stein, G. Whyman, R. Pogreb, Z. Barkay, Environmental scanning electron microscope study of the fine structure of the triple line and cassie-wenzel wetting transition for sessile drops deposited on rough polymer substrates. Langmuir 23, 4378–4382 (2007)

    Article  Google Scholar 

  8. E. Bormashenko, T. Stein, R. Pogreb, D. Aurbach, “Petal effect” on surfaces based on lycopodium: high-stick surfaces demonstrating high apparent contact angles. J. Phys. Chem. C 113, 5568–5572 (2009)

    Article  Google Scholar 

  9. A. Cassie, S. Baxter, Wettability of porous surfaces. Trans. Faraday Soc. 40, 546–551 (1944)

    Article  Google Scholar 

  10. F.M. Chang, S.J. Hong, Y.J. Sheng, H.K. Tsao, High contact angle hysteresis of superhydrophobic surfaces: hydrophobic defects. Appl. Phys. Lett. 95, 064102 (2009)

    Article  Google Scholar 

  11. M.K. Dawood, H. Zheng, T.H. Liew, K.C. Leong, Y.L. Foo, R. Rajagopalan, S.A. Khan, W.K. Choi, Mimicking both petal and lotus effects on a single silicon substrate by tuning the wettability of nanostructured surfaces. Langmuir 27, 4126–4133 (2011)

    Article  Google Scholar 

  12. L. Feng, Y. Zhang, J. Xi, Y. Zhu, N. Wang, F. Xia, L. Jiang, Petal effect: a superhydrophobic state with high adhesive force. Langmuir 24, 4114 (2008)

    Article  Google Scholar 

  13. L. Feng, Y.A. Zhang, Y.Z. Cao, X.X. Ye, L. Jiang, The effect of surface microstructures and surface compositions on the wettabilities of flower petals. Soft Matter 7, 2977–2980 (2011)

    Article  Google Scholar 

  14. L. Gao, T.J. McCarthy, Teflon is hydrophilic. Comments on definitions of hydrophobic, shear versus tensile hydrophobicity, and wettability characterization. Langmuir 24, 9184–9188 (2008)

    Google Scholar 

  15. M.H. Jin, X.L. Feng, L. Feng, T.L. Sun, J. Zhai, T.J. Li, L. Jiang, Superhydrophobic aligned polystyrene nanotube films with high adhesive force. Adv. Mater. 17, 1977–1981 (2005)

    Article  Google Scholar 

  16. Y.C. Jung, B. Bhushan, Contact angle, adhesion, and friction properties of micro- and nanopatterned polymers for superhydrophobicity. Nanotechnology 17, 4970–4980 (2006)

    Article  Google Scholar 

  17. B. Krasovitski, A. Marmur, Drops down the hill: theoretical study of limiting contact angles and the hysteresis range on a tilted plane. Langmuir 21, 3881–3885 (2004)

    Article  Google Scholar 

  18. H. Kusumaatmaja, J.M. Yeomans, Modeling contact angle hysteresis on chemically patterned and superhydrophobic surfaces. Langmuir 23, 6019–6032 (2007)

    Article  Google Scholar 

  19. W. Li, A. Amirfazli, Superhydrophobic surfaces: adhesive strongly to water? Adv. Mater. 19, 3421–3422 (2007)

    Article  Google Scholar 

  20. M.J. Liu, L. Jiang, Switchable adhesion on liquid/solid interfaces. Adv. Func. Mater. 20, 3753–3764 (2010)

    Article  MathSciNet  Google Scholar 

  21. M.J. Liu, Y.M. Zheng, J. Zhai, L. Jiang, Bioinspired super-antiwetting interfaces with special liquid–solid adhesion. Acc. Chem. Res. 43, 368–377 (2010)

    Article  Google Scholar 

  22. G. McHale, All solids, including Teflon, are hydrophilic (to some extent), but some have roughness induced hydrophobic tendencies. Langmuir 25, 7185–7187 (2009)

    Article  Google Scholar 

  23. M. Nosonovsky, Model for solid–liquid and solid–solid friction for rough surfaces with adhesion hysteresis. J. Chem. Phys. 126, 224701 (2007)

    Article  Google Scholar 

  24. M. Nosonovsky, On the range of applicability of the wenzel and cassie equations. Langmuir 23, 9919–9920 (2007)

    Article  Google Scholar 

  25. M. Nosonovsky, Entropy in tribology: in search of applications. Entropy 12, 1345–1390 (2010)

    Article  Google Scholar 

  26. M. Nosonovsky, B. Bhushan, Biomimetic superhydrophobic surfaces: multiscale approach. Nano Lett. 7, 2633–2637 (2007)

    Article  Google Scholar 

  27. M. Nosonovsky, B. Bhushan, Multiscale friction mechanisms and hierarchical surfaces in nano- and bio-tribology. Mater. Sci. Eng. R 58, 162–193 (2007)

    Article  Google Scholar 

  28. M. Nosonovsky, B. Bhushan, Hierarchical roughness makes superhydrophobic surfaces stable. Microelectron. Eng. 84, 382–386 (2007)

    Article  Google Scholar 

  29. M. Nosonovsky, B. Bhushan, Hierarchical roughness optimization for biomimetic superhydrophobic surfaces. Ultramicroscopy 107, 969–979 (2007)

    Article  Google Scholar 

  30. M. Nosonovsky, B. Bhushan, Biologically-inspired surfaces: broadening the scope of roughness. Adv. Func. Mater. 18, 843–855 (2008)

    Article  Google Scholar 

  31. M. Nosonovsky, B. Bhushan, Energy transitions in superhydrophobicity: low adhesion, easy flow and bouncing. J. Phys. Condens. Matter 20, 395005 (2008)

    Article  Google Scholar 

  32. M. Nosonovsky, B. Bhushan, Multiscale Dissipative Mechanisms and Hierarchical Surfaces: Friction, Superhydrophobicity, and Biomimetics (Springer, Heidelberg, 2008)

    MATH  Google Scholar 

  33. M. Nosonovsky, B. Bhushan, Superhydrophobic surfaces and emerging applications: non-adhesion, energy, green engineering. Curr. Opin. Colloid Interface Sci. 14, 270–280 (2010)

    Article  Google Scholar 

  34. A. Tonosaki, T. Nishide, Novel petal effect of hafnia films prepared in an aqueous solution and containing hydroxy acids. Appl. Phys. Express 3, 125801 (2010)

    Article  Google Scholar 

  35. S. Vedantam, M.V. Panchagnula, Phase field modeling of hysteresis in sessile drops. Phys. Rev. Lett. 99, 176102 (2007)

    Article  Google Scholar 

  36. S. Wang, L. Jiang, Definition of superhydrophobic states. Adv. Mater. 19, 3423–3424 (2007)

    Article  Google Scholar 

  37. R.N. Wenzel, Resistance of solid surfaces to wetting by water. Indust. Eng. Chem. 28, 988–994 (1936)

    Article  Google Scholar 

  38. G. Whyman, E. Bormashenko, T. Stein, The rigorous derivation of young, cassie–baxter and wenzel equations and the analysis of the contact angle hysteresis phenomenon. Chem. Phys. Lett. 450, 355–359 (2008)

    Article  Google Scholar 

  39. F. Xia, L. Jiang, Bio-inspired, smart, multiscale interfacial materials. Adv. Mater. 20, 2842–2858 (2008)

    Article  Google Scholar 

Download references

Acknowledgment

Michael Nosonovsky acknowledges the support of the UWM Research Growth Initiative grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bharat Bhushan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Nosonovsky, M., Bhushan, B. (2012). Lotus Versus Rose: Biomimetic Surface Effects. In: Nosonovsky, M., Bhushan, B. (eds) Green Tribology. Green Energy and Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23681-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-23681-5_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-23680-8

  • Online ISBN: 978-3-642-23681-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics