Skip to main content

Tribological Properties of Fly Ash-Based Green Friction Products

  • Chapter
  • First Online:
Green Tribology

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

Growing concern for the environment coupled with the increasing cost of petro-based resources and advancements in the fields of biotechnology, nanotechnology and materials science, and engineering has led to the development of green materials for various applications. Fly ash is a particulate waste by-product formed as a result of coal combustion in power plants. Worldwide, more than 65% of fly ash produced from coal power stations is disposed off in landfills and ash ponds. The recycling of fly ash has become an increasing concern in recent years due to increasing landfill costs and the current interest in sustainable development. The use of fly ash as a filler or reinforcement for composites is desirable from an environmental standpoint. Recently, fly ash was successfully used in metal matrix composites to reduce overall weight and these composites are successfully used in automotive and aerospace applications. The polymer matrix composites developed using fly ash can be used as low cost green friction materials. This study is a review on the tribological behavior of fly ash-based green friction composites to understand their usability for various automotive applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. P.J. Blau, Compositions, functions, and testing of friction brake materials and their additives, Report by Oak Ridge National Laboratory, USA, 2001

    Google Scholar 

  2. P.J. Blau, J.C. McLaughlin, Effects of water films and sliding speed on the frictional behavior of truck disc brake materials. Tribol. Int. 36, 709–715 (2003)

    Article  Google Scholar 

  3. P.J. Blau, H.M. Meyer III, Characteristics of wear particles produced during friction tests of conventional and unconventional disc brake materials. Wear 255, 1261–1269 (2003)

    Article  Google Scholar 

  4. H. Jang, K. Ko, S.J. Kim, R.H. Basch, J.W. Fash, The effect of metal fibers on the friction performance of automotive brake friction materials. Wear 256, 406–414 (2004)

    Article  Google Scholar 

  5. W. Krenkel, F. Berndt, C/C–SiC composites for space applications and advanced friction systems. Mater. Sci. Eng. A 412, 177–181 (2005)

    Article  Google Scholar 

  6. J. Bijwe, Composites as friction materials: recent developments in non-asbestos fiber reinforced friction materials–a review. Polym. Compos. 18, 378–396 (1997)

    Article  Google Scholar 

  7. M.G. Jacko, P.H.S. Tsang, S.K. Rhee, Automotive friction materials evolution during the past decade. Wear 100, 503–515 (1984)

    Article  Google Scholar 

  8. R.K. Uyyuru, M.K. Surappa, S. Brusethaug, Effect of reinforcement volume fraction and size distribution on the tribological behavior of Al-composite/brake pad tribo-couple. Wear 260, 1248–1255 (2006)

    Article  Google Scholar 

  9. R.K. Uyyuru, M.K. Surappa, S. Brusethaug, Tribological behavior of Al-Si-SiCp composites/automobile brake pad system under dry sliding conditions. Tribol. Int. 40, 365–373 (2007)

    Article  Google Scholar 

  10. K. Laden, J.D. Guérin, M. Watremez, J.P. Bricout, Frictional characteristics of Al–SiC composite brake discs. Tribol. Lett. 8, 237–247 (2000)

    Article  Google Scholar 

  11. S. Zhang, F. Wang, Comparison of friction and wear performances of brake material dry sliding against two aluminum matrix composites reinforced with different SiC particles. J. Mater. Process. Technol. 182, 122–127 (2007)

    Article  Google Scholar 

  12. N. Natarajan, S. Vijayarangan, I. Rajendran, Wear behaviour of A356/25SiCp aluminium matrix composites sliding against automobile friction material. Wear 261, 812–822 (2006)

    Article  Google Scholar 

  13. A. D’souza, Filled polymer composites, US Patent 0104943, 2007

    Google Scholar 

  14. S. Steinmetz, H.-D. Elison, J. Meiers, M. Kraus, O. Runge, Friction material, European Patent EP1694979B1, 2010

    Google Scholar 

  15. D.C. Adriano, A.L. Page, A.A. Elseewi, A.C. Chang, I. Straughan, Utilization and disposal of fly ash and other coal residues in terrestrial ecosystems: a review. J. Environ. Qual. 9, 333–344 (1980)

    Article  Google Scholar 

  16. R.S. Iyer, J.A. Scott, Power station fly ash–a review of value-added utilization outside of the construction industry. Resour. Conserv. Recycl. 31, 217–228 (2001)

    Article  Google Scholar 

  17. R.Q. Guo, P.K. Rohatgi, D. Nath, Preparation of aluminium-fly ash particulate composite by powder metallurgy technique. J. Mater. Sci. 32, 3971–3974 (1997)

    Article  Google Scholar 

  18. P.K. Rohatgi, R.Q. Guo, B.N. Keshavaram, Cast aluminum alloy–fly ash composites. Key Eng. Mater. 104–107, 283–292 (1995)

    Article  Google Scholar 

  19. R.Q. Guo, P.K. Rohatgi, D. Nath, Compacting characteristics of aluminium-fly ash powder mixtures. J. Mater. Sci. 31, 5513–5519 (1996)

    Article  Google Scholar 

  20. T. Matsunaga, J. Kim, S. Hardcastle, P. Rohatgi, Crystallinity and selected properties of fly ash particles. Mater. Sci. Eng. A 325, 333–343 (2002)

    Article  Google Scholar 

  21. P.K. Rohatgi, T. Matsunaga, N. Gupta, Compressive and ultrasonic properties of polyester/fly ash composites. J. Mater. Sci. 44, 1485–1493 (2009)

    Article  Google Scholar 

  22. K.T. Varughese, B.K. Chaturvedi, Fly ash as fine aggregate in polyester based polymer concrete. Cem. Concr. Compos. 18, 105–108 (1996)

    Article  Google Scholar 

  23. R.T. Hemmings, R.L. Hill, B.J. Cornelius, Filler comprising fly ash for use in polymer composites, US Patent 0032707Al, 2003

    Google Scholar 

  24. K.W.-Y. Wong, R.W. Truss, Effect of fly ash content and coupling agent on the mechanical properties of fly ash-filled polypropylene. Compos. Sci. Technol. 52, 361–368 (1994)

    Article  Google Scholar 

  25. S. Bose, P.A. Mahanwar, Effect of fly ash on the mechanical, thermal, dielectric, rheological and morphological properties of filled nylon 6. J. Miner. Mater. Charact. Eng. 3, 65–89 (2004)

    Google Scholar 

  26. G. Subhashini, B.H. Renuka, H.R. Imamkhasim, Studies on fly ash characteristics and mechanical properties of fly ash polyester matrix composite, Internal Report, CPRI, India, 2004

    Google Scholar 

  27. K.W. Hee, P. Filip, Performance of ceramic enhanced phenolic matrix brake lining materials for automotive brake linings. Wear 259, 1088–1096 (2005)

    Article  Google Scholar 

  28. V.M. Malhotra, P.S. Valimbe, M.A. Wright, Effects of fly ash and bottom ash on the frictional behavior of composites. Fuel 81, 235–244 (2002)

    Article  Google Scholar 

  29. J. Pan, Y. Naerheim, T.T.-L. Liao, P. Min, Brake pad lining filler material, US patent 0055126, 2003

    Google Scholar 

  30. R.B. Pond, Metal composites with fly ash incorporated therein and a process for producing the same, US patent 4888054, 1989

    Google Scholar 

  31. Y.P. Chugh, Friction materials comprising coal combustion and coal gasification byproducts, US patent 0121474, 2008

    Google Scholar 

  32. B.K. Satapathy, A. Majumdar, B.S. Tomar, Optimal design of fly ash filled composite friction materials using combined analytical hierarchy process and technique for order preference by similarity to ideal solutions approach. Mater. Des. 31, 1937–1944 (2010)

    Article  Google Scholar 

  33. V.M. Malhotra, P.S. Valimbe, M.A. Wright, Fabrication of automotive brake composite from unburned carbon. ACS. Fuel Div. 45(3), 504–508 (2000)

    Google Scholar 

  34. N. Dadkar, B.S. Tomar, B.K. Satapathy, Evaluation of fly ash-filled and aramid fibre reinforced hybrid polymer matrix composites (PMC) for friction braking applications. Mater. Des. 30, 4369–4376 (2009)

    Article  Google Scholar 

  35. S. Mohanty, Y. Chugh, Development of fly ash-based automotive brake lining. Tribol. Int. 40, 1217–1224 (2007)

    Article  Google Scholar 

  36. S.R. Chauhan, A. Kumar, I. Singh, P. Kumar, Effect of fly ash content on friction and dry sliding wear behavior of glass fiber reinforced polymer composites: a taguchi approach. J. Miner. Mater. Charact. Eng. 9, 365–387 (2010)

    Google Scholar 

  37. S.H. Zhang, G. Chen, C. Cui, C. Mi, F. Tian, Study on friction and wear behavior of glass fiber and fly ash reinforced MC nylon composites. Advan. Tribol. Part 3, II 460–463 (2010)

    Google Scholar 

  38. D. Ray, R. Gnanamoorthy, Friction and wear behavior of vinylester resin matrix composites filled with fly ash particles. J. Reinf. Plast. Compos. 26, 5–13 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pradeep K. Rohatgi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rohatgi, P.K., Menezes, P.L., Lovell, M.R. (2012). Tribological Properties of Fly Ash-Based Green Friction Products. In: Nosonovsky, M., Bhushan, B. (eds) Green Tribology. Green Energy and Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23681-5_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-23681-5_16

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-23680-8

  • Online ISBN: 978-3-642-23681-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics