Skip to main content

Green Lubricants: Role of Additive Size

  • Chapter
  • First Online:
Green Tribology

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

The depletion of the world’s crude oil reserve, increased oil prices, and the demand to protect the environment against pollution exerted by hydraulic and gear oils have brought about renewed interest in the development and use of green lubricants. In this light, many automotive and manufacturing industries are actively seeking out new green lubricants. Although, many green lubricants have exhibited excellent properties, more improvement in their friction and wear performance are still needed for them to become mainstream. Consequently, environmental friendly additive materials are being included in green lubricant formulations to improve their friction and wear properties. In this study, a review of the tribological behavior of the green lubricants presently available has been performed. Overall, the review indicates that green lubricants can significantly outperform conventional lubricants with respect to frictional and wear performance. In addition, the review shows that the size and composition of the lubricant additives play an important role in determining a green lubricant’s overall performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. http://maps.unomaha.edu/peterson/funda/sidebar/oilconsumption.html

  2. http://www.carbohydrateeconomy.org/library/admin/uploadedfiles/Harvesting_Lubricants.htm

  3. http://researchwikis.com/Lubricants_Marketing_Research

  4. B. Bhushan, Principles and Applications of Tribology (Wiley, New York, 1999)

    Google Scholar 

  5. B. Bhushan, Introduction to Tribology (Wiley, New York, 2002)

    Google Scholar 

  6. K.C. Ludema, Friction, Wear, Lubrication: A Text Book in Tribology (CRC Press, New York, 1996)

    Book  Google Scholar 

  7. J.W. Bartz, Lubricants and the environment. Tribol. Int. 31(1–3), 35–47 (1998)

    Article  Google Scholar 

  8. A. Barriga, A. Igartua, A. Aranzabe, Sunflower based grease for heavy duty applications. In Proceedings World Tribology Congress III, Washington, D.C., USA, 2005, pp. 481–482

    Google Scholar 

  9. N. Battersby, Environmentally acceptable lubricants: current status and future opportunities. In Proceedings World Tribology Congress III, Washington, D.C., USA, 2005, pp. 483–484

    Google Scholar 

  10. P. Deshmukh, M.R. Lovell, W.G. Sawyer, A. Mobley, On the friction and wear performance of boric acid lubricant combinations in extended duration operations. Wear 260(11–12), 1295–1304 (2006)

    Article  Google Scholar 

  11. J. Grushcow, High oleic plant oils with hydroxy fatty acids for emission reduction. In Proc. World Tribology Congress III, Washington, D.C., USA, 2005, pp. 485–486

    Google Scholar 

  12. J. Grushcow, M.A. Smith, Next generation feedstocks from new frontiers in oilseed engineering. In Proceedings World Tribology Congress III, Washington, D.C., USA, 2005, pp. 487–488

    Google Scholar 

  13. N. Jayadas, N. Prabhakaran, G. Ajithkumar, Vegetable oils as base oil for industrial lubricants- evaluation oxidative and low temperature properties using TGA, DTA and DSC. In Proceedings World Tribology Congress III, Washington, D.C., USA, 2005, pp. 539–540

    Google Scholar 

  14. M.A. Kabir, C.F. Higgs III, M.R. Lovell, A pin-on-disk experimental study on a green particulate-fluid lubricant. J. Tribol. 130(4), 041801–041806 (2008)

    Article  Google Scholar 

  15. M. Lovell, C.F. Higgs III, A.J. Mobley, A novel particulate-fluid lubricant for environmentally benign forming processes. In Proceedings World Tribology Congress III Washington, D.C., USA, 2005 pp. 829–830

    Google Scholar 

  16. M.R. Lovell, C.F. Higgs III, P. Deshmukh, A. Mobley, Increasing formability in sheet metal stamping operations using environmentally friendly lubricants. J. Mater. Process. Technol. 177(1–3), 87–90 (2006)

    Article  Google Scholar 

  17. C. Puscas, G. Bandur, D. Modra, R. Nutiu, Considerations about using vegetable oils in lubricants. In Proceedings World Tribology Congress III, Washington, D.C., USA, 2005 pp. 915–916

    Google Scholar 

  18. A.M. Petlyuk, R.J. Adams, Oxidation stability and tribological behavior of vegetable oil hydraulic fluids. Tribol. Trans. 47(2), 182–187 (2004)

    Article  Google Scholar 

  19. W.E. Neff, T.L. Mounts, W.M. Rinsch, H. Konishi, M.A. El-Agaimy, Oxidative stability of purified canola oil triacylglycerols with altered fatty acid compositions as affected by triacylglycerol composition and structure. J. Am. Oil Chem. Soc. 71(10), 1101–1109 (1994)

    Article  Google Scholar 

  20. E.Y.A. Wornyoh, V.K. Jasti, C.F. Higgs III, A review of dry particulate lubrication: powder and granular materials. J. Tribol. 129(2), 438–449 (2007)

    Article  Google Scholar 

  21. D.W. Dareing, S. Atluri, Traction behavior and physical properties of powder graphite lubricants compacted to hertzian pressure levels. Tribol. Trans. 40(3), 413–420 (1997)

    Article  Google Scholar 

  22. H. Heshmat, Quasi-hydrodynamic mechanism of powder lubrication: part III: on theory and rheology of triboparticulates. Tribol. Trans. 38(2), 269–276 (1995)

    Article  Google Scholar 

  23. V. Johnson, G. Vaughn, Investigation of the mechanism of MoS2 lubrication in vacuum. J. Appl. Phys. 27(10), 1173–1179 (1956)

    Article  Google Scholar 

  24. J.K. Lancaster, Lubrication by transferred films of solid lubricants. ASLE Trans. 8, 146–155 (1965)

    Article  Google Scholar 

  25. J.K. Lancaster, Anisotropy in the mechanical properties of lamellar solids and its effect on wear and transfer. Wear 9, 169–188 (1966)

    Article  MathSciNet  Google Scholar 

  26. M. Brendle, P. Turgis, S. Lamouri, A general approach to discontinuous transfer films: the respective role of mechanical and physicochemical interactions. Tribol. Trans. 39(1), 157–165 (1996)

    Article  Google Scholar 

  27. M. Godet, The third-body approach: a mechanical view of wear. Wear 100, 437–452 (1984)

    Article  Google Scholar 

  28. M. Godet, D. Play, D. Berthe, An attempt to provide a unified treatment of tribology through load carrying capacity, transport and continuum mechanics. J. Lubr. Technol. 102, 153–164 (1980)

    Article  Google Scholar 

  29. H. Heshmat, J.F. Dill, Traction characteristics of high-temperature, powder-lubricated ceramics (Si3N4/SiC). Tribol. Trans. 35(2), 360–366 (1992)

    Article  Google Scholar 

  30. C.F. Higgs III, C. Heshmat, H. Heshmat, Comparative evaluation of MoS2 and WS2 as powder lubricants in high speed, multi-pad journal bearings. J. Tribol. 121, 625–630 (1999)

    Article  Google Scholar 

  31. P.W. Centers, The role of oxide and sulfide additions in solid lubricant compacts. Tribol. Trans. 31(2), 149–156 (1987)

    Article  Google Scholar 

  32. H. Heshmat, High-temperature solid-lubricated bearing development-dry powder lubricated traction testing. J. Propuls. Power 7(5), 814–820 (1991)

    Article  Google Scholar 

  33. H. Heshmat, W. Shapiro, High temperature, unbalanced, dry, contact face seal interfacial phenomenon and design considerations. Tribol. Trans. 45(4), 235–242 (1989)

    Google Scholar 

  34. H. Heshmat, J.F. Walton, The basics of powder lubrication in high-temperature powder-lubricated dampers. J. Eng. Gas Turbine Power 115(2), 372–382 (1993)

    Article  Google Scholar 

  35. C.F. Higgs III, J. Tichy, Granular flow lubrication: continuum modeling of shear behavior. J. Tribol. 124, 499–510 (2004)

    Article  Google Scholar 

  36. X. Hu, On the size effect of molybdenum disulfide particles on tribological performance. Ind. Lubr. Tribol. 57(6), 255–259 (2005)

    Article  Google Scholar 

  37. X.G. Hu, S.L. Hu, Y.S. Zhao, Synthesis of nanometric molybdenum disulphide particles and evaluation of friction and wear properties. Lubr. Sci. 17(3), 295–308 (2005)

    Article  MathSciNet  Google Scholar 

  38. F. Ilie, C. Tita, Tribological properties of solid lubricant nanocomposite coatings on base of tungsten disulphide nanoparticles. Tribologia 27(4), 5–11 (2008)

    Google Scholar 

  39. S. Prasad, J.S. Zabinski, Tribology of tungsten disulphide (WS2): characterization of wear-induced transfer films. J. Mater. Sci. Lett. 12(18), 1413–1415 (1993)

    Article  Google Scholar 

  40. A. Shankara, P.L. Menezes, K.R.Y. Simha, S.V. Kailas, Study of solid lubrication with MoS2 coating in the presence of additives using reciprocating ball-on-flat scratch tester. Sadhana 33(3), 207–220 (2008)

    Article  Google Scholar 

  41. X. Shao, W. Liu, Q. Xue, The tribological behavior of micrometer and nanometer TiO2 particle-filled poly (phthalazine ether sulfone ketone) composites. J. Appl. Polym. Sci. 92(2), 906–914 (2004)

    Article  Google Scholar 

  42. A. Erdemir, Tribological properties of boric acid and boric-acid-forming surfaces: Part II: mechanisms of formation and self-lubrication films on boron- and boric oxide-containing surfaces. Lubr. Eng. 47(3), 179–184 (1991)

    Google Scholar 

  43. A. Erdemir, G.R. Fenske, R.A. Erck, F.A. Nicholas, D.E. Busch, Tribological properties of boric acid and boric-acid-forming surfaces: Part 1: crystal chemistry and mechanism of self -lubrication of boric acid. Lubr. Eng. 47(3), 168–178 (1991)

    Google Scholar 

  44. A. Erdemir, M. Halter, G.R. Fenske, Preparation of ultralow-friction surface films on vanadium diboride. Wear 205, 236–239 (1997)

    Article  Google Scholar 

  45. J. Wei, A. Erdemir, G. Fenske, Dry lubricant films for aluminum forming. Tribol. Trans. 43(3), 535–541 (2000)

    Article  Google Scholar 

  46. T. Barton, J. Steffens, W.G. Sawyer, T.L. Schmitz, J.C. Ziegert, M.R. Lovell, In situ solid lubricant deposition for environmentally benign forming. In Proceedings STLE Annual Meeting, Toronto, Canada, 2004

    Google Scholar 

  47. W.G. Sawyer, J.C. Ziegert, T.L. Schmitz, T. Barton, In situ lubrication with boric acid: powder delivery of an environmentally benign solid lubricant. Tribol. Trans. 49(2), 284–290 (2006)

    Article  Google Scholar 

  48. A. Erdemir, R.A. Erck, J. Robles, Relationship of hertzian contact pressure to friction behavior of self-lubricating boric acid films. Surf. Coat. Technol. 49, 435–438 (1991)

    Article  Google Scholar 

  49. R.L. Johnson, H.B. Sliney, Ceramic surface films for lubrication at temperatures of 2000 F. Ceram. Bull. 41, 504–508 (1962)

    Google Scholar 

  50. M.B. Peterson, S.L. Murray, J.J. Florek, Consideration of lubricants for temperatures above 1000 F. ASLE Trans. 2, 225–234 (1960)

    Google Scholar 

  51. A. Erdemir, O.L. Eryilmaz, G.R. Fenske, Self-replenishing solid lubricant films on boron carbide. Surf. Eng. 15(4), 291–295 (1999)

    Article  Google Scholar 

  52. W.T. Branneen, G.D. Burt, R.A. McDonald, Phosphite amine lubricant for metal working and machining. US Patent No 4965002, 1990

    Google Scholar 

  53. H. Liang, S. Jahanmir, Boric acid as an additive for core-drilling of alumina. J. Tribol. 117(1), 65–73 (1995)

    Article  Google Scholar 

  54. K.P. Rao, J.J. Wei, Performance of a new dry lubricant in the forming of aluminum alloy sheets. Wear 249(1–2), 85–92 (2000)

    Google Scholar 

  55. K.P. Rao, C.L. Xie, A comparative study on the performance of boric acid with several conventional lubricants in metal forming processes. Tribol. Int. 39(7), 663–668 (2006)

    Article  Google Scholar 

  56. T.E. Fischer, H. Tomizawa, Interaction of tribochemistry and micro fracture in the friction and wear of silicon nitride. Wear 105, 29–45 (1985)

    Article  Google Scholar 

  57. H.D. Huang, J.P. Tu, L.P. Gan, C.Z. Li, An investigation on tribological properties of graphite nanosheets as oil additive. Wear 261(2), 140–144 (2006)

    Article  Google Scholar 

  58. Q. Sunqing, D. Junxiu, C. Guoxu, A review of ultrafine particles as antiwear additives and friction modifiers in lubricating oils. Lubr. Sci. 11(3), 217–226 (1999)

    Article  Google Scholar 

  59. Z. Xiaodong, F. Xun, S. Huaqiang, H. Zhengshui, Lubricating properties of cyanex 302-modified MoS2 microspheres in base oil 500SN. Lubr. Sci. 19(1), 71–79 (2006)

    Article  Google Scholar 

  60. L. Cizaire, B. Vacher, T. Le Mogne, J.M. Martin, L. Rapoport, A. Margolin, R. Tenne, Mechanisms of ultra-low friction by hollow inorganic fullerene-like MoS2 nanoparticles. Surf. Coat. Technol. 160(2–3), 282–287 (2002)

    Article  Google Scholar 

  61. V. Leshchinsky, E. Alyoshina, M. Lvovsky, Y. Volovik, I. Lapsker, R. Tenne, L. Rapoport, Inorganic nanoparticle impregnation of self lubricated materials. Int. J. Powder Metall. 38(5), 50–57 (2002)

    Google Scholar 

  62. V. Leshchinsky, R. Popovitz-Biro, K. Gartsman, R. Rosentsveig, Y. Rosenberg, R. Tenne, L. Rapoport, Behavior of solid lubricant nanoparticles under compression. J. Mater. Sci. 39(13), 4119–4129 (2004)

    Article  Google Scholar 

  63. L. Rapoport, N. Fleischer, R. Tenne, Fullerene-like WS2 nanoparticles: superior lubricants for harsh conditions. Adv. Mater. 15(7–8), 651–655 (2003)

    Article  Google Scholar 

  64. L. Rapoport, V. Leshchinsky, M. Lvovsky, I. Lapsker, Y. Volovik, Y. Feldman, R. Popovitz-Biro, R. Tenne, Superior tribological properties of powder materials with solid lubricant nanoparticles. Wear 255(7–12), 794–800 (2003)

    Article  Google Scholar 

  65. J. Narayan, Lubricant having nanoparticles and microparticles to enhance fuel efficiency and a laser synthesis method to create dispersed nanoparticles. U.S. Patent 0042751Al, 2009

    Google Scholar 

  66. A. Erdemir, Lubrication from mixture of boric acid with oils and greases. U.S Patent 5431830, 1995

    Google Scholar 

  67. A. Erdemir, Method to improve lubricity of low-sulfur diesel and gasoline fuels. U.S. Patent 6783561, (2004)

    Google Scholar 

  68. M.R. Lovell, M.A. Kabir, P.L. Menezes, C.F. Higgs III, Influence of boric acid additive size on green lubricant performance. Phil. Trans. R. Soc. A 368, 4851–4868 (2010)

    Article  Google Scholar 

  69. L. Rapoport, Y. Bilik, Y. Feldman, M. Homyonfer, S.R. Cohen, R. Tenne, Hollow nanoparticles of WS2 as potential solid-state lubricants. Nature 387, 791–793 (1997)

    Article  Google Scholar 

  70. H. Heshmat, The rheology and hydrodynamics of dry powder lubrication. Tribol. Trans. 34(3), 433–439 (1991)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael R. Lovell .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Menezes, P.L., Lovell, M.R., Kabir, M.A., Higgs, C.F., Rohatgi, P.K. (2012). Green Lubricants: Role of Additive Size. In: Nosonovsky, M., Bhushan, B. (eds) Green Tribology. Green Energy and Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23681-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-23681-5_10

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-23680-8

  • Online ISBN: 978-3-642-23681-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics