Skip to main content

Efficient Image Segmentation Using Weighted Pseudo-Elastica

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 6854))

Abstract

We introduce a new segmentation method based on second-order energies. Compared to the related works it has the significantly lower computational complexity O(NlogN). The increased efficiency is achieved by integrating curvature approximation into a new bidirectional search scheme. Some heuristics are applied in the algorithm at the cost of exact energy minimisation. Our novel pseudo-elastica core algorithm is then incorporated into a user-guided segmentation scheme which represents a generalisation of classic first-order path-based schemes to second-order energies while maintaining the same low complexity. Our results suggest that, compared to first-order approaches, it scores similar or better results and usually requires considerably less user-input. As opposed to a recently introduced efficient second-order scheme, both closed contours and open contours with fixed endpoints can be computed with our technique.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kass, M., Witkin, A., Terzopoulos, D.: Snakes: Active contour models. IJCV 1(4), 321–331 (1988)

    Article  MATH  Google Scholar 

  2. Caselles, V., Kimmel, R., Sapiro, G.: Geodesic active contours. IJCV 22(1), 61–79 (1997)

    Article  MATH  Google Scholar 

  3. Cohen, L.D., Kimmel, R.: Global minimum for active contour models: A minimal path approach. IJCV 24(1), 57–78 (1997)

    Article  Google Scholar 

  4. Sethian, J.: A fast marching level set method for monotonically advancing fronts. Proc. National Academy of Sciences 93, 1591–1595 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  5. Boykov, Y., Kolmogorov, V.: Computing geodesics and minimal surfaces via graph cuts. In: Proc. ICCV 2003 (2003)

    Google Scholar 

  6. Appleton, B., Talbot, H.: Globally optimal geodesic active contours. Journ. of Math. Imag. and Vis. 23(1), 67–86 (2005)

    Article  MathSciNet  Google Scholar 

  7. Schoenemann, T., Cremers, D.: Introducing curvature into globally optimal image segmentation: Minimum ratio cycles on product graphs. In: Proc. ICCV 2007 (2007)

    Google Scholar 

  8. Schoenemann, T., Kahl, F., Cremers, D.: Curvature regularity for region-based image segmentation and inpainting: A linear programming relaxation. In: Proc. ICCV 2009 (2009)

    Google Scholar 

  9. El-Zehiry, N.Y., Grady, L.: Fast global optimization of curvature. In: Proc. CVPR 2010 (2010)

    Google Scholar 

  10. El-Zehiry, N.Y., Grady, L.: Optimization of weighted curvature for image segmentation (2010) (preprint), arXiv:1006.4175v1 [cs.CV]

    Google Scholar 

  11. Dijkstra, E.: A note on two problems in connexion with graphs. Num. Math. 1, 269–271 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  12. Krueger, M.: Segmentation of Surfaces Using Active Contours. PhD thesis, The University of Auckland (February 2011)

    Google Scholar 

  13. Bennett, J.R., MacDonald, J.S.: On the measurement of curvature in a quantized environment. IEEE Transactions on Computers 24(8), 803–820 (1975)

    Article  MATH  Google Scholar 

  14. Pohl, I.: Bi-directional search. Machine Intelligence 6, 127–140 (1971)

    MathSciNet  MATH  Google Scholar 

  15. Mumford, D.: Elastica and computer vision. In: Bajaj, C. (ed.) Algebraic Geometry and its Applications, pp. 491–506. Springer, New York (1994)

    Chapter  Google Scholar 

  16. Windheuser, T., Schoenemann, T., Cremers, D.: Beyond connecting the dots: A polynomial-time algorithm for segmentation and boundary estimation with imprecise user input. In: Proc. ICCV 2009 (2009)

    Google Scholar 

  17. Ardon, R., Cohen, L.D.: Fast constrained surface extraction by minimal paths. IJCV 69(1), 127–136 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Krueger, M., Delmas, P., Gimel’farb, G. (2011). Efficient Image Segmentation Using Weighted Pseudo-Elastica. In: Real, P., Diaz-Pernil, D., Molina-Abril, H., Berciano, A., Kropatsch, W. (eds) Computer Analysis of Images and Patterns. CAIP 2011. Lecture Notes in Computer Science, vol 6854. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23672-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-23672-3_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-23671-6

  • Online ISBN: 978-3-642-23672-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics