Skip to main content

A Simplified Gravitational Model for Texture Analysis

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 6854))

Abstract

Textures are among the most important features in image analysis. This paper presents a novel methodology to extract information from them, converting an image into a simplified dynamical system in gravitational collapse whose states are described by using the lacunarity method. The paper compares the proposed approach to other classical methods using Brodatz’s textures as benchmark.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Haralick, R.M.: Statistical and structural approaches to texture. Proc. IEEE 67(5), 786–804 (1979)

    Article  Google Scholar 

  2. Bala, J.W.: Combining structural and statistical features in a machine learning technique for texture classification. In: IEA/AIE, vol. 1, pp. 175–183 (1990)

    Google Scholar 

  3. Tuceryan, M., Jain, A.K.: Texture analysis. In: Chen, C.H., Pau, L.F., Wang, P.S.P. (eds.) Handbook of Pattern Recognition and Computer Vision, pp. 235–276. World Scientific, Singapore (1993)

    Chapter  Google Scholar 

  4. Casanova, D., Sá Junior, J.J.M., Bruno, O.M.: Plant leaf identification using gabor wavelets. International Journal of Imaging Systems and Technology 19(1), 236–243 (2009)

    Article  Google Scholar 

  5. Lu, C.S., Chung, P.C., Chen, C.F.: Unsupervised texture segmentation via wavelet transform. Pattern Recognition 30(5), 729–742 (1997)

    Article  Google Scholar 

  6. Arivazhagan, S., Ganesan, L.: Texture classification using wavelet transform. Pattern Recognition Letters 24(9-10), 1513–1521 (2003)

    Article  MATH  Google Scholar 

  7. Costa, L.F., Rodrigues, F.A., Travieso, G., Villas Boas, P.R.: Characterization of complex networks: A survey of measurements. Advances in Physics 56(1) (2005)

    Google Scholar 

  8. Backes, A.R., Gonçalves, W.N., Martinez, A.S., Bruno, O.M.: Texture analysis and classification using deterministic tourist walk. Pattern Recognition 43, 685–694 (2010)

    Article  MATH  Google Scholar 

  9. Varma, M., Garg, R.: Locally invariant fractal features for statistical texture classification. In: International Conference on Computer Vision - ICCV 2007, pp. 1–8 (2007)

    Google Scholar 

  10. Newton, I.: Philosophiae Naturalis Principia Mathematica. University of California, Berkeley (1999); original 1687, translation guided by I.B. Cohen

    MATH  Google Scholar 

  11. Mandelbrot, B.: The fractal geometry of nature. Freeman, San Francisco (1982)

    MATH  Google Scholar 

  12. Allain, C., Cloitre, M.: Characterizing the lacunarity of random and deterministic fractal sets. Phys. Rev. A 44(6), 3552–3558 (1991)

    Article  MathSciNet  Google Scholar 

  13. Facon, J., Menoti, D., de Albuquerque Araújo, A.: Lacunarity as a texture measure for address block segmentation. In: Sanfeliu, A., Cortés, M.L. (eds.) CIARP 2005. LNCS, vol. 3773, pp. 112–119. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  14. Dong, P.: Test of a new lacunarity estimation method for image texture analysis. International Journal of Remote Sensing 21(17), 3369–3373 (2000)

    Article  Google Scholar 

  15. Du, G., Yeo, T.S.: A novel lacunarity estimation method applied to SAR image segmentation. IEEE Trans. Geoscience and Remote Sensing 40(12), 2687–2691 (2002)

    Article  Google Scholar 

  16. Brodatz, P.: Textures: A photographic album for artists and designers. Dover Publications, New York (1966)

    Google Scholar 

  17. Everitt, B.S., Dunn, G.: Applied Multivariate Analysis, 2nd edn. Arnold (2001)

    Google Scholar 

  18. Azencott, R., Wang, J.P., Younes, L.: Texture classification using windowed fourier filters. IEEE Trans. Pattern Anal. Mach. Intell. 19(2), 148–153 (1997)

    Article  Google Scholar 

  19. Idrissa, M., Acheroy, M.: Texture classification using gabor filters. Pattern Recognition Letters 23(9), 1095–1102 (2002)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

de M. Sá Junior, J.J., Backes, A.R. (2011). A Simplified Gravitational Model for Texture Analysis. In: Real, P., Diaz-Pernil, D., Molina-Abril, H., Berciano, A., Kropatsch, W. (eds) Computer Analysis of Images and Patterns. CAIP 2011. Lecture Notes in Computer Science, vol 6854. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23672-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-23672-3_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-23671-6

  • Online ISBN: 978-3-642-23672-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics