Skip to main content

From Points to Nodes: Inverse Graph Embedding through a Lagrangian Formulation

  • Conference paper
Book cover Computer Analysis of Images and Patterns (CAIP 2011)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 6854))

Included in the following conference series:

Abstract

In this paper, we introduce a novel concept: Inverse Embedding. We formulate inverse embedding in the following terms: given a set of multi-dimensional points coming directly or indirectly from a given spectral embedding, find the mininal complexity graph (following a MDL criterion) which satisfies the embedding constraints. This means that when the inferred graph is embedded it must provide the same distribution of squared distances between the original multi-dimensional vectors. We pose the problem in terms of a Lagrangian and find that a fraction of the multipliers (the smaller ones) resulting from the deterministic annealing process provide the positions of the edges of the unknown graph. We proof the convergence of the algorithm through an analysis of the dynamics of the deterministic annealing process and test the method with some significant sample graphs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Belkin, M., Niyogi, P.: Laplacian Eigenmaps for Dimensionality Reduction and Data Representation. Neural Computation 15(6), 1373–1396 (2003)

    Article  MATH  Google Scholar 

  2. Nadler, B. Lafon, L., Coifman, R., Kevrekidis, I.G.: Diffusion Maps, Spectral Clustering and Eigenfunctions of Fokker-Planck Operators. In: Proc. of NIPS 2005 (2005)

    Google Scholar 

  3. Xiao, B., Hancock, E.R., Wilson, R.C.: Geometric Characterization and Clustering of Graphs using Heat Kernel embeddings. Image Vision Comput. 28(6), 1003–1021 (2010)

    Article  Google Scholar 

  4. Qiu, H., Hancock, E.R.: Clustering and Embedding Using Commute Times. IEEE Trans. on PAMI 29(11), 1873–1890 (2007)

    Article  Google Scholar 

  5. Bunke, H., Riesen, K.: Graph Classification Based on Dissimilarity Space Embedding. In: da Vitoria Lobo, N., Kasparis, T., Roli, F., Kwok, J.T., Georgiopoulos, M., Anagnostopoulos, G.C., Loog, M. (eds.) S+SSPR 2008. LNCS, vol. 5342, pp. 996–1007. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  6. Riesen, K., Bunke, H.: Feature Ranking Algorithms for Improving Classification of Vector Space Embedded Graphs. In: Jiang, X., Petkov, N. (eds.) CAIP 2009. LNCS, vol. 5702, pp. 377–384. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  7. Ferrer, M., Valveny, E., Serratosa, F., Riesen, K., Bunke, H.: Generalized Median Graph Computation by Means of Graph embedding in Vector spaces. Pattern Recognition 43(4), 1642–1655 (2010)

    Article  MATH  Google Scholar 

  8. Escolano, F., Hancock, E.R., Lozano, M.: Graph Matching through Entropic Manifold Alignment. In: Proc. of CVPR 2011 (2011) (accepted for publication)

    Google Scholar 

  9. Chen, T., Vemuri, B., Rangarajan, A., Eisenschenk, S.: Group-wise Point-set Registration using a Novel cdf-based Havrda-Charvát Divergence. International Journal of Computer Vision 86(1), 111–124 (2010)

    Article  MathSciNet  Google Scholar 

  10. Henze, N., Penrose, M.: On the multi-variate runs test. Annals of Statistics 27, 290–298 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  11. Friedman, J.H., Rafsky, L.C.: Mutivariate Generalization of the Wald-Wolfowitz and Smirnov Two-Sample Tests. Annals of Statistics 7(4), 697–717 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  12. Stowell, D., Plumbley, M.D.: Fast Multidimensional Entropy Estimation by K-d Partitioning. IEEE Signal Processing Letters 16(6), 537–540 (2009)

    Article  Google Scholar 

  13. Escolano, F., Lozano, M.A., Bonev, B., Suau, P.: Bypass Information-Theoretic Shape Similarity from Non-rigid Points-based Alignment. In: Proc. of CVPR Workshops (NORDIA) (2010)

    Google Scholar 

  14. Peñalver, A., Escolano, F., Sáez, J.M.: Learning Gaussian Mixture Models With Entropy-Based Criteria. IEEE Transactions on Neural Networks 20(11), 1756–1771 (2009)

    Article  Google Scholar 

  15. Peñalver, A., Escolano, F., Bonev, B.: Entropy-Based Variational Scheme for Fast Bayes Learning of Gaussian Mixtures. In: Proc. of S+SSPR 2010 (2010)

    Google Scholar 

  16. Rangarajan, A., Yuille, A.L., Mjolsness, E.: Convergence Properties of the Softassign Quadratic Assignment Algorithm. Neural Computation 11(6), 1455–1474 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Escolano, F., Hancock, E.R. (2011). From Points to Nodes: Inverse Graph Embedding through a Lagrangian Formulation. In: Real, P., Diaz-Pernil, D., Molina-Abril, H., Berciano, A., Kropatsch, W. (eds) Computer Analysis of Images and Patterns. CAIP 2011. Lecture Notes in Computer Science, vol 6854. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23672-3_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-23672-3_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-23671-6

  • Online ISBN: 978-3-642-23672-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics