Skip to main content

Micromechanical Analysis of Mode I Crack Growth in Carbon Fibre Reinforced Polymers

  • Chapter
  • First Online:
Damage and Fracture of Composite Materials and Structures

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 17))

Abstract

Computational micromechanics models offer the possibility of analysis and quantification of the failure mechanisms that take place at the micro-scale level and are the responsible of the damage in the composite with high accuracy and with the need for very few hypotheses. Although these kind of analyses are common in current scientific literature, the analysis performed are generally limited to the stress/strain fields. This work makes use of a micromechanical model to analyze the crack tip and the cohesive zone of an interlaminar crack loaded in mode I for a carbon fiber reinforced polymer (CFRP). A periodic square fibre distribution is assumed and modelled in a FE environment and a degradation law is used to simulate damage in the matrix. This simulation allows both stress and strain quantification during crack opening and fracture mechanics analysis, such as the estimation of the critical value of the energy release rate and the quantification of the length of the cohesive zone, which is a parameter required for the application of cohesive elements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Allix, O., Corigliano, A.: Modeling and simulation of crack propagation in mixed-modes interlaminar fracture specimens. Int. J. Fract. 77(2), 111–140 (1996)

    Article  Google Scholar 

  2. Asp, L.E., Berglund, L.A., Gudmunson, P.: Effects of a composite-like stress state on the fracture of epoxies. Compos. Sci. Technol. 53(1), 27–37 (1995)

    Article  Google Scholar 

  3. Asp, L.E., Berglund, L.A., Talreja, R.: A criterion for crack initiation in glassy polymers subjected to a composite-like stress state. Compos. Sci. Technol. 56(11), 1291–1301 (1996)

    Article  Google Scholar 

  4. Asp, L.E., Berglund, L.A., Talreja, R.: Prediction of matrix-initiated transverse failure in polymer composites. Compos. Sci. Technol. 56(9), 1089–1097 (1996)

    Article  Google Scholar 

  5. American Standard Test Methods (ASTM).: Standard Test Method for Mode I Interlaminar Fracture Toughness of Unidirectional Fiber-Reinforced Polymer Matrix Composites. ASTM D5528-01 (2001)

    Google Scholar 

  6. Barenblatt, G.: The mathematical theory of equilibrium cracks in brittle fracture. Adv. Appl. Mech. 7, 55–129 (1962)

    Article  MathSciNet  Google Scholar 

  7. Borg, R., Nilsson, L., Simonsson, K.: Modeling of delamination using a discretized cohesive zone and damage formulation. Compos. Sci. Technol. 62(10-11), 1299–1314 (2002)

    Article  Google Scholar 

  8. Chen, J., Crisfield, M., Kinloch, A.J., Busso, E.P., Matthews, F.L., Qiu, Y.: Predicting progressive delamination of composite material specimens via interface elements. Mech. Compos. Mater. Struct. 6(4), 301–317 (1999)

    Google Scholar 

  9. Crews, J.H., Shivakumar, K.N., Raju, I.S.: Factors influencing elastic stresses in double cantilever beam specimens. NASA Technical Memorandum 89033 (1986)

    Google Scholar 

  10. Crews, J.H., Shivakumar, K.N., Raju, I.S.: A fiber-resin micromechanics analysis of the delamination front in a DCB specimen. NASA Technical Memorandum 100540 (1988)

    Google Scholar 

  11. Dugdale, D.S.: Yielding of steel sheets containing slits. J. Mech. Phys. Solids 8, 100–104 (1960)

    Article  Google Scholar 

  12. Falk, M.L., Needleman, A., Rice, J.R.: A critical evaluation of cohesive zone models of dynamic fracture. J. Phys. IV, 543–550 (2001)

    Google Scholar 

  13. Fiedler, B., Hojo, M., Ochiai, S., Schulte, K., Ando, M.: Failure behavior of an epoxy matrix under different kinds of static loading. Compos. Sci. Technol. 61(11), 1615–1624 (2001)

    Article  Google Scholar 

  14. Gdoutos, E.E.: Fracture Mechanis Criteria and Applications. Kluwer, Dordrecht (1990)

    Book  Google Scholar 

  15. Greenhalgh, E.S.: Delamination growth in carbon-fibre composite structures. Compos. Struct. 23(2), 165–175 (1993)

    Article  Google Scholar 

  16. Hillerborg, A., Modéer, M., Petersson, P.E.: Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements. Cem. Concr. Res. 6, 773–782 (1976)

    Article  Google Scholar 

  17. Hui, C.Y., Jagota, A., Bennison, S.J., Londono, J.D.: Crack blunting and the strength of soft elastic solids. Proc. R. Soc. Lond. Ser. A. 459, 1489–1516 (2003)

    Article  MATH  Google Scholar 

  18. Hunston, Moulton et al.: Matrix resin effects in composite delamination. In: Johnston N.J. (ed.) Toughned Composites. ASTM STP vol. 937, pp. 74–94. ASTM International, West Conshohocken, Philadelphia, USA (1987)

    Google Scholar 

  19. Irwin, G.R.: Plastic zone near a crack and fracture toughness. In: Proceedings of the Seventh Sagamore Ordnance Materials Conference, vol. 4, pp. 63–78. Syracuse University, New York (1960)

    Google Scholar 

  20. International Standards Organization (ISO).: Standard test Method for Mode I Interlaminar Fracture Toughness, GIC, of Unidirectional fibre-reinforced Polymer Matrix Composites. ISO 15024 (2001)

    Google Scholar 

  21. Krüger, R.: The Virtual Crack Closure Technique: History, Approach and Applications. NASA/CR-2002-211628. NASA/CR-2002-211628 (2002)

    Google Scholar 

  22. Krüger, R., Cvitkovich, M.K., O’Brien, T.K., Minguet, P.J.: Testing and analysis of composite skin/stringer debonding under multi-axial loading. J. Compos. Mater. 34(15), 1263–1300 (2000)

    Google Scholar 

  23. Ladevéze, P., Allix, O., Gornet, L., Lèveque, D.: A computational damage mechanics approach for laminates: identification and comparisons with experimental results. In: Voyiadkjis, G.Z., Ju, J.W.W., Chaboche, J.L. (eds.): Damage Mechanics in Engineering Materials, pp. 481–499. Elsevier Science B.V., North Holland (1998)

    Google Scholar 

  24. Liang, Y.-M., Liechti, K.M.: On the large deformation and localization behavior of an epoxy resin under multiaxial stress states.. Int. J. Solids Struct. 33(10), 1479–1500 (1996)

    Article  Google Scholar 

  25. Rice J.: The mechanics of earthquake rupture, physics of the earth’s interior. In: Dziewonski, A.M., Boschi, E. (eds.) Proceedings of the International School of Physics Enrico Fermi, Course 78, 1979, pp. 555–649, Italian Physical Society and North-Holland (1980)

    Google Scholar 

  26. Turon, A., Camanho, P.P., Costa, J., Dávila, C.G.: A damage model for the simulation of delamination in advanced composites under variable-mode loading. Mech. Mater. 38(11), 1072–1089 (2006)

    Article  Google Scholar 

  27. Turon, A., Costa, J., Camanho, P., Maimí, P.: Analytical and Numerical Investigation of the Length of the Cohesive Zone in Delaminated Composite in Mechanical Response of Composites, pp. 77–97. Springer, Heidelberg (2008)

    Google Scholar 

  28. Maugin, G. A.: The Thermomechanics of Nonlinear Irreversible Behaviors.An Introduction. World Scientific Publishing, London (1999).

    Google Scholar 

Download references

Acknowledgments

The authors acknowledge the funding provided by the Spanish Ministry of Science and Innovation (MICINN) through research projects GRINCOMP (reference MAT2003-09768-C03-01) and EVISER2 (reference DPI2009-08048).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Trias .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Trias, D., Maimí, P. (2012). Micromechanical Analysis of Mode I Crack Growth in Carbon Fibre Reinforced Polymers. In: Tamin, M. (eds) Damage and Fracture of Composite Materials and Structures. Advanced Structured Materials, vol 17. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23659-4_3

Download citation

Publish with us

Policies and ethics