Skip to main content

Study of the Supercavitating Body Dynamics

  • Chapter
  • First Online:
Supercavitation

Abstract

In this paper, the results of investigations of dynamics of supercavitating (SC) bodies are presented, which were performed by authors in cooperation with Yu.N. Savchenko. Computer simulation of the SC-body motion based on the G.V. Logvinovich principle of independence of supercavity section expansion [1, 2] is the main research method. A general problem of the three-dimensional (3D) motion of the SC-body is formulated. Special cases of both the longitudinal and the lateral motion of SC-bodies are considered. Problems of the motion stability and optimization of SC-bodies moving on inertia on the arbitrary angle to the horizon are investigated. It is shown that the SC-vehicle motion in the regime of planing within a cavity is unstable on the depth. A comparative analysis of stabilization and control of motion (maneuverability) of SC-vehicles by inclination of the cavitator having two degrees of freedom and by the vectoring thrust is given.

In this paper, some materials from the works [3–9] were used, a part of the results were represented on the International conferences [10–13].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Logvinovich GV. Hydrodynamics of flows with free boundaries. Kiev: Naukova dumka; 1969. 208p. (In Russian). English translation: Halsted Press, 1973.

    Google Scholar 

  2. Logvinovich GV. Problems of the theory of slender axisymmetric cavities. Trudy TsAGI. 1976;1797:3–17 (In Russian).

    Google Scholar 

  3. Savchenko YuN, Vlasenko YuD, Semenenko VN. Experimental investigations of high-speed cavitation flows. Hidromehanika. 1998;72:103–11. (In Russian). English translation: Int J Fluid Mech Res. 1999;26(3):365–74.

    Google Scholar 

  4. Savchenko YuN, Semenenko VN, Putilin SI. Unsteady processes in supercavitation motion of bodies. Prykladna hidromehanika. 1999;1(1):62–80. (In Russian). English translation: Int J Fluid Mech Res. 2000;27(1):109–37.

    Google Scholar 

  5. Semenenko VN. Computer simulation of dynamics of supercavitatating bodies. Prykladna Hidromehanika. 2000;2(1):64–9 (In Russian).

    Google Scholar 

  6. Nesteruk IG, Semenenko VM. Optimization problems for supercavitation inertial motion of axisymmetric bodies. Prykladna Hidromehanika. 2006;8(1):51–9 (In Ukrainian).

    MATH  Google Scholar 

  7. Nesteruk IG, Savchenko YuM, Sememenko VM. Optimization of the range for the supercavitation motion on inertia. Dopovidi NAN Ukrainy. 2006;8:57–66 (In Ukrainian).

    Google Scholar 

  8. Semenenko VN. Modelling the longitudinal motion of the underwater supercavitating vehicles. Prykladna Hidromehanika. 2010;12(4):81–8 (In Russian).

    Google Scholar 

  9. Savchenko YuN, Semenenko VN. On the course maneuvering the underwater supercavitating vehicle. Prykladna Hidromehanika. 2011;13(1):43–50 (In Russian).

    Google Scholar 

  10. Savchenko YuN, Semenenko VN, Putilin SI, et al. Designing the high-speed supercavitating vehicles. Proceedings of the 8th International Conference on Fast Sea Transportation (FAST’2005). St. Petersburg; 2005.

    Google Scholar 

  11. Savchenko YuN, Semenenko VN, Putilin SI, et al. Some problems of the supercavitating motion management. Sixth International Symposium on Cavitation CAV2006. Wageningen; 2006.

    Google Scholar 

  12. Nesteruk IG, Savchenko YuN, Semenenko VN. Achievement of maximal range of supercavitating body inertial motion. Proceedings of the International conference on subsea technologies (SubSeaTECH2007); June 25–28, 2007. St. Petersburg; 2007.

    Google Scholar 

  13. Semenenko VN. Some problems of supercavitating vehicle designing. Proceedings of the International Conference on superfast marine vehicles moving above, under and in water surface (SuperFAST’2008); 2–4 July 2008. St. Petersburg; 2008.

    Google Scholar 

  14. Savchenko YuN. Experimental investigation of supercavitating motion of bodies. VKI/RTO Special Course on Supercavitation. Von Karman Institute for Fluid Dynamics. Brussels; 2001. (Belgium).

    Google Scholar 

  15. Savchenko YuN. Control of supercavitation flow and stability of supercavitating motion of bodies. VKI/RTO Special Course on Supercavitation. Von Karman Institute for Fluid Dynamics. Brussels; 2001. (Belgium).

    Google Scholar 

  16. Savchenko YuN. Supercavitating object propulsion. VKI/RTO Special Course on Supercavitation. Von Karman Institute for Fluid Dynamics. Brussels; 2001. (Belgium).

    Google Scholar 

  17. Semenenko VN. Artificial supercavitation. Physics and calculation. VKI/RTO Special Course on Supercavitation. Von Karman Institute for Fluid Dynamics, Brussels; 2001. (Belgium).

    Google Scholar 

  18. Semenenko VN. Dynamic processes of supercavitation and computer simulation. VKI/RTO Special Course on Supercavitation. Von Karman Institute for Fluid Dynamics. Brussels; 2001. (Belgium).

    Google Scholar 

  19. Logvinovich GV. Some problems of planing. Trudy TsAGI. 1980;2052:3–12 (In Russian).

    Google Scholar 

  20. Savchenko YuN. Investigations of supercavitation flows. Prykladna Hidromehanika. 2007;9(2–3):150–8 (In Russian).

    MATH  Google Scholar 

  21. Kulkarni SS, Pratar R. Studies on the dynamics of a supercavitating projectiles. Appl Math Model. 2000;24(2):113–29.

    Article  MATH  Google Scholar 

  22. Abe A, Katayama M, Saito T, Takayama K. Numerical simulation on supercavitation and jawing of a supersonic projectile traveling in water. Symposium on Interdisciplinary Shock Wave Research. Sendai; March 22–24, 2004.

    Google Scholar 

  23. Lindau JW, Kunz RF, Mulherin JM, Dreyer JJ, Stinebring DR. Fully coupled, 6-DOF to URANS, modelling of cavitating flows around a supercavitating vehicle. Fifth International Symposium on Cavitation CAV2006. Osaka; 2003

    Google Scholar 

  24. Kirschner I, Rosenthal BJ, Uhlman JS. Simplified dynamical systems analysis of supercavitating high-speed bodies. Fifth International Symposium on Cavitation CAV2006. Osaka; 2003.

    Google Scholar 

  25. Kirschner IN, Kring DC, Stokes AW, Fine NE, Uhlman JS. Control strategies for supercavitating vehicles. J Vib Control. 2002;8:219–42.

    Article  MATH  Google Scholar 

  26. Dzielski J, Kurdila A. A benchmark control problem for supercavitating vehicles and an initial investigation of solution. J Vib Control. 2003;19(7):791–804.

    Article  Google Scholar 

  27. Ruzzene M, Kamada R, Botasso CL, Scorceletti F. Trajectory optimization strategies for supercavitating undervater vehicles. J Vib Control. 2008;14(5):611–44.

    Article  MATH  Google Scholar 

  28. Botasso CL, Scorceletti F. Trajectory optimization for DDE models of supercavitating undervater vehicles. Online preprint; 2008. http://www.aero.polimi.it/~bottasso/.

  29. Balas GJ, Bokor J, Vanek B, Arndt REA. Control of high-speed undervater vehicles. In: B.A. Francis et al. (eds.) Control of uncertain systems. Berlin/Heidelberg: Springer-Verlag; 2006. p. 25–44.

    Google Scholar 

  30. Vanek B, Bokor J, Balas GJ, Arndt REA. Longitudinal motion control of a high-speed supercavitation vehicle. J Vib Control. 2007;13(2):159–84.

    Article  MATH  Google Scholar 

  31. Lin G, Balachndran B, Abed EH. Nonlinear dynamics and bifurcations of a supercavitating vehicle. IEEE J Ocean Eng. 2007;32(4):753–61.

    Article  Google Scholar 

  32. Lin G, Balachandran B, Abed E. Dynamics and control of supercavitating vehicles. J Dynam Syst Meas Control. 2008;130(2):1–11.

    Google Scholar 

  33. Li DJ, Zhang YW, Luo K, Dang JJ. Motion control of underwater supercavitating projectiles in vertical plane. Mod Appl Sci. 2009;3(2):60–5.

    Google Scholar 

  34. Li DJ, Luo K, Zhang YW, Dang JJ. Studies on fixed-depth control of supercavitating vehicles. Acta Automatica Sinica. 2010;36(3):421–6.

    Article  Google Scholar 

  35. Polyahov NN, Zegzhda SA, Yushkov MP. Theoretical mechanics. Moscow: Vysshaya shkola; 2000 (In Russian).

    Google Scholar 

  36. Lukomskiy YuA, Chugunov VS. Systems of controls of marine vehicles. Leningrad: Sudostroenie; 1988 (In Russian).

    Google Scholar 

  37. Logvinovich GV, Serebryakov VV. On the methods of calculating a shape of the slender axisymmetric cavities. Hidromehanika. 1975;32:47–54 (In Russian).

    Google Scholar 

  38. Buyvol VN. Slender cavities in flows with perturbations. Kiev: Naukova Dumka; 1980 (In Russian).

    Google Scholar 

  39. Vasin AD, Paryshev EV. Immersion of a cylinder in liquid through a cylindrical free surface. Izvestiya AN SSSR, Mehanika zhidkosti i gasa. 2001;2:3–12 (In Russian).

    Google Scholar 

  40. Schlichting H. Boundary layer theory. New York: McGraw-Hill; 1961.

    Google Scholar 

  41. Putilin SI. Some features of a supercavitating model dynamics. Prykladna hidromehanika. 2000;2(3):65–74 (In Russian). English translation: Int J Fluid Mech Res. 2001;28(5):631–43.

    Google Scholar 

  42. Nesteruk IG, Semenenko VM. Problems of optimization of a range of the supercavitation motion on inertia with a fixed final depth. Prykladna Hidromehanika. 2006;8(4):33–42 (In Ukrainian).

    MATH  Google Scholar 

  43. Semenenko VN. Computer simulation of pulsations of ventialed supecavities. Hidromehanika. 1997;71:110–8. (In Russian). English translation: Int J Fluid Mech Res. 1996;23(3 & 4):302–12.

    Google Scholar 

  44. Savchenko YuN. Perspectives of the supercavitation flow applications. Proceedings of the International Conference on Superfast Marine Vehicles Moving Above, Under and in Water Surface (SuperFAST’2008); 2–4 July 2008. St. Petersburg; 2008.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. N. Semenenko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Semenenko, V.N., Naumova, Y.I. (2012). Study of the Supercavitating Body Dynamics. In: Nesteruk, I. (eds) Supercavitation. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23656-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-23656-3_9

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-23655-6

  • Online ISBN: 978-3-642-23656-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics