Skip to main content

Cooperative Assembly Systems

  • Conference paper
DNA Computing and Molecular Programming (DNA 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6937))

Included in the following conference series:

Abstract

Several molecular systems form large-scale objects. One would like to understand their assembly and how this assembly is regulated. As a first step, we investigate the phase transition structure of a class of bipartite cooperative assembly systems. We characterize which of these systems have a (probabilistic) equilibrium and find an explicit form for their local energy (§2). We obtain, under additional limitations on cooperativity, the average dynamics of some partial observables (§4). Combining both steps, we obtain conditions for the phase transition to a large cluster (§5).

This paper is an invited contribution to the Proceedings of the 17th International Conference on DNA Computing and Molecular Programming (2011).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Danos, V., Feret, J., Fontana, W., Harmer, R., Krivine, J.: Abstracting the differential semantics of rule-based models: Exact and automated model reduction. In: Proceedings of the 25th Annual IEEE Symposium on Logic in Computer Science, LICS 2010, Edinburgh, United Kingdom, July 11-14, pp. 362–381 (2010)

    Google Scholar 

  2. Danos, V., Feret, J., Fontana, W., Krivine, J.: Abstract interpretation of cellular signalling networks. In: Logozzo, F., Peled, D.A., Zuck, L.D. (eds.) VMCAI 2008. LNCS, vol. 4905, pp. 83–97. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  3. Danos, V., Oury, N.: Equilibrium and termination II: the case of Petri nets (2010) (to appear in MSCS)

    Google Scholar 

  4. Danos, V., Schumacher, L.J.: How liquid is biological signalling? Theoretical Computer Science 410(11), 1003–1012 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  5. Durrett, R.: Random graph dynamics, vol. 20. CUP (2007)

    Google Scholar 

  6. Feret, J., Danos, V., Harmer, R., Krivine, J., Fontana, W.: Internal coarse-graining of molecular systems. PNAS 106(16), 6453–6458 (2009)

    Article  Google Scholar 

  7. Harmer, R., Danos, V., Feret, J., Krivine, J., Fontana, W.: Intrinsic Information carriers in combinatorial dynamical systems. Chaos 20(3), 037108 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. Harris, T.: The theory of branching processes. Dover (1989)

    Google Scholar 

  9. Koeppl, H., Hafner, M., Danos, V.: Rule-based modeling for protein-protein interaction networks - the Cyanobacterial circadian clock as a case study. In: WCSB 2009 Proceedings, pp. 87–91 (2009)

    Google Scholar 

  10. Koeppl, H., Schumacher, L.J., Danos, V.: A statistical analysis of receptor clustering using random graphs. In: WCSB 2009 Proceedings, pp. 95–99 (2009)

    Google Scholar 

  11. Molloy, M., Reed, B.: A critical point for random graphs with a given degree sequence. Random Structures & Algorithms 6(2-3), 161–180 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  12. Ollivier, J., Shahrezaei, V., Swain, P.: Scalable rule-based modelling of allosteric proteins and biochemical networks. PLoS Computational Biology 6(11) (2010)

    Google Scholar 

  13. Qian, L., Winfree, E.: Scaling up digital circuit computation with dna strand displacement cascades. Science 332(6034), 1196 (2011)

    Article  Google Scholar 

  14. Saiz, L., Vilar, J.: Stochastic dynamics of macromolecular-assembly networks. Molecular Systems Biology 2(1) (2006)

    Google Scholar 

  15. Sneddon, M., Faeder, J., Emonet, T.: Efficient modeling, simulation and coarse-graining of biological complexity with nfsim. Nature Methods (2010)

    Google Scholar 

  16. Williamson, J.R.: Cooperativity in macromolecular assembly. Nat. Chem. Biol. 4(8), 458–465 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Danos, V., Koeppl, H., Wilson-Kanamori, J. (2011). Cooperative Assembly Systems. In: Cardelli, L., Shih, W. (eds) DNA Computing and Molecular Programming. DNA 2011. Lecture Notes in Computer Science, vol 6937. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23638-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-23638-9_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-23637-2

  • Online ISBN: 978-3-642-23638-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics