Automatic Tracking of an Organ Section with an Ultrasound Probe: Compensation of Respiratory Motion

  • Caroline Nadeau
  • Alexandre Krupa
  • Jacques Gangloff
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6891)


In minimally invasive surgery or needle insertion procedures, the ultrasound imaging can easily and safely be used to visualize the target to reach. However the manual stabilization of the view of this target, which undergoes the physiological motions of the patient, can be a challenge for the surgeon. In this paper, we propose to perform this stabilization with a robotic arm equipped with a 2D ultrasound probe. The six degrees of freedom of the probe are controlled by an image-based approach, where we choose as visual feedback the image intensity. The accuracy of the control law is ensured by the consideration of the periodicity of the physiological motions in a predictive controller. Tracking tasks performed on a realistic abdominal phantom validate the proposed approach and its robustness to deformation is assessed on a gelatin-made deformable phantom.


visual servoing ultrasound motion compensation 


  1. 1.
    Abolmaesumi, P., Salcudean, S., Zhu, W., Sirouspour, M., DiMaio, S.: Image-guided control of a robot for medical ultrasound. IEEE Trans. on Rob. 18, 11–23 (2002)CrossRefGoogle Scholar
  2. 2.
    Lee, D., Koizumi, N., Ota, K., Yoshizawa, S., Ito, A., Kaneko, Y., Matsumoto, Y., Mitsuishi, M.: Ultrasound-based visual servoing system for lithotripsy. In: IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, pp. 877–882 (2007)Google Scholar
  3. 3.
    Krupa, A., Fichtinger, G., Hager, G.D.: Real time motion stabilization with B-mode ultrasound using image speckle information and visual servoing. Int. J. of Rob. Res. 28, 1334–1354 (2009)CrossRefGoogle Scholar
  4. 4.
    Nakamura, Y., Kishi, K., Kawakami, H.: Heartbeat synchronization for robotic cardiac surgery. In: IEEE Int. Conf. on Robotics and Automation, ICRA 2001, pp. 2014–2019 (2001)Google Scholar
  5. 5.
    Ortmaier, T., Groger, M., Boehm, D., Falk, V., Hirzinger, G.: Motion estimation in beating heart surgery. IEEE Trans. on Biomedical Engineering 52, 1729–1740 (2005)CrossRefGoogle Scholar
  6. 6.
    Bebek, O., Cavusoglu, M.C.: Intelligent control algorithms for robotic-assisted beating heart surgery. IEEE Trans. on Rob. 23, 468–480 (2007)CrossRefGoogle Scholar
  7. 7.
    Yuen, S.G., Kettler, D.T., Novotny, P.M., Plowes, R.D., Howe, R.D.: Robotic motion compensation for beating heart intracardiac surgery. Int. J. of Rob. Res. 28, 1355–1372 (2009)CrossRefGoogle Scholar
  8. 8.
    Clifford, M.A., Banovac, F., Levy, E., Cleary, K.: Assessment of hepatic motion secondary to respiration for computer assisted interventions. Computer Aided Surgery 7, 291–299 (2002)CrossRefGoogle Scholar
  9. 9.
    Espiau, B., Chaumette, F., Rives, P.: A new approach to visual servoing in robotics. IEEE Trans. on Rob. 8, 313–326 (1992)CrossRefGoogle Scholar
  10. 10.
    Collewet, C., Marchand, E.: Photometric visual servoing. IEEE Trans. on Rob. 27 (2011)Google Scholar
  11. 11.
    Clarke, D.W., Mohtadi, C., Tuffs, P.S.: Generalized predictive control - Part I: The basic algorithm. Automatica 23, 137–160 (1987)CrossRefzbMATHGoogle Scholar
  12. 12.
    Gangloff, J., Ginhoux, R., De Mathelin, M., Soler, L., Marescaux, J.: Model predictive control for compensation of cyclic organ motions in teleoperated laparoscopic surgery. IEEE Trans. on Control System Technology 14, 235–246 (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Caroline Nadeau
    • 1
  • Alexandre Krupa
    • 2
  • Jacques Gangloff
    • 3
  1. 1.Université de Rennes I, IRISARennesFrance
  2. 2.INRIA Rennes-Bretagne Atlantique, IRISARennesFrance
  3. 3.LSIIT, UMR 7005 CNRS-Université de Strasbourg IIllkirchFrance

Personalised recommendations