Advertisement

An Instantiability Index for Intra-operative Tracking of 3D Anatomy and Interventional Devices

  • Su-Lin Lee
  • Celia Riga
  • Lisa Crowie
  • Mohamad Hamady
  • Nick Cheshire
  • Guang-Zhong Yang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6891)

Abstract

The tracking of tissue deformation, imaging probes and surgical instruments is an integral part of intra-operative surgical guidance. While the recent introduction of shape instantiation provides a systematic framework for tracking 3D anatomy in real-time, deviations to the desired imaging location can affect the accuracy of the predicted shape. To examine the sensitivity of the prescribed image planes to such errors, we introduce in this paper a new Instantiability Index for providing the intrinsic level of robustness while using such scan planes for the tracking of anatomy and interventional devices. Optimisation of the Index is applied to 3D anatomical reconstruction and the localisation of an intraoperative imaging device. Results are shown on detailed phantom experiments for both real-time 3D shape instantiation and imaging catheter tracking.

Keywords

instantiability index shape instantiation tracking localization 

References

  1. 1.
    Lee, S.-L., Chung, A., Lerotic, M., Hawkins, M.A., Tait, D., Yang, G.-Z.: Dynamic Shape Instantiation for Intra-operative Guidance. In: Jiang, T., Navab, N., Pluim, J.P.W., Viergever, M.A. (eds.) MICCAI 2010. LNCS, vol. 6361, pp. 69–76. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  2. 2.
    Brij Koolwal, A., Barbagli, F., Carlson, C., Liang, D.: An Ultrasound-based Localization Algorithm for Catheter Ablation Guidance in the Left Atrium. The International Journal of Robotics Research 29, 643–665 (2010)CrossRefGoogle Scholar
  3. 3.
    King, A.P., Rhode, K.S., Ma, Y., Yao, C., Jansen, C., Razavi, R., et al.: Registering Preprocedure Volumetric Images With Intraprocedure 3-D Ultrasound Using an Ultrasound Imaging Model. IEEE Transactions on Medical Imaging 29, 924–937 (2010)CrossRefGoogle Scholar
  4. 4.
    Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes in C. Cambridge University Press, Cambridge (1992)zbMATHGoogle Scholar
  5. 5.
    Mercier, L., Langø, T., Lindseth, F., Collins, D.L.: A review of calibration techniques for freehand 3-D ultrasound systems. Ultrasound in Medicine & Biology 31, 449–471 (2005)CrossRefGoogle Scholar
  6. 6.
    Gegenfurtner, K.: PRAXIS: Brent’s algorithm for function minimization. Behavior Research Methods 24, 560–564 (1992)CrossRefGoogle Scholar
  7. 7.
    Prager, R.W., Rohling, R.N., Gee, A.H., Berman, L.: Rapid Calibration for 3-D Freehand Ultrasound. Ultrasound in Medicine and Biology 24, 855–869 (1998)CrossRefGoogle Scholar
  8. 8.
    Lerotic, M., Lee, S.-L.: A Multimodal Silicone Phantom for Robotic Surgical Training and Simulation. In: The Hamlyn Symposium on Medical Robotics, London, UK, pp. 65–66 (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Su-Lin Lee
    • 1
  • Celia Riga
    • 2
    • 3
  • Lisa Crowie
    • 2
  • Mohamad Hamady
    • 2
  • Nick Cheshire
    • 2
    • 3
  • Guang-Zhong Yang
    • 1
  1. 1.The Hamlyn Centre for Robotic SurgeryImperial College LondonUK
  2. 2.Regional Vascular UnitSt Mary’s HospitalUK
  3. 3.Academic Division of SurgeryImperial College LondonUK

Personalised recommendations