Evaluation of invivo Liver Tissue Characterization with Spectral RF Analysis versus Elasticity

  • Stéphane Audière
  • Elsa D. Angelini
  • Maurice Charbit
  • Véronique Miette
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6891)


Ultrasonic elastography, via vibration-controlled transient elastography (VCTETM), enables to assess, under active mechanical constraints, the elasticity of the liver, correlating with fibrosis stages. On the other hand, the same VCTETM probe can also be used in passive mode, acquiring RF lines at different locations in the liver. This paper presents a thorough evaluation of passive-mode RF spectral parameters (integrated backscatter coefficient, power spectral index, effective scattering size and spectral variance), for tissue characterization on a large cohort of volunteers with various ranges of elasticity measures. Results showed that capabilities to discriminate between liver and subcutaneous fat tissues were highly variable among spectral parameters. Furthermore, it appears that no in vivo discrimination of liver elasticity/fibrosis stage can be performed with passive RF spectral analysis, at 3.5MHz.


ultrasound RF lines liver backscatter coefficient scatterer size spectral analysis elastography 


  1. 1.
    Sandrin, L., et al.: Transient elastography: A new noninvasive method for assessment of hepatic fibrosis. Ultrasound in Medicine and Biology 29, 1705–1713 (2003)CrossRefGoogle Scholar
  2. 2.
    Castera, L., et al.: Prospective comparison of transient elastography, Fibrotest, APRI, and liver biopsy for the assessment of fibrosis in chronic hepatitis C. Gastroenterology 128, 343–350 (2005)CrossRefGoogle Scholar
  3. 3.
    Oosterveld, B.J., et al.: Ultrasound attenuation and texture analysis of diffuse liver disease: methods and preliminary results. Physics in Medicine and Biology 36, 1039–1064 (1991)CrossRefGoogle Scholar
  4. 4.
    Romijn, R.L., et al.: Estimation of scatterer size from backscattered ultrasound: a simulation study. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control 36, 593–606 (1989)CrossRefGoogle Scholar
  5. 5.
    Kuc, R., Schwartz, M.: Estimating the Acoustic Attenuation Coefficient Slope for Liver from Reflected Ultrasound Signals. IEEE Transactions on Sonics and Ultrasonics 26, 353–361 (1979)CrossRefGoogle Scholar
  6. 6.
    Insana, M.F., et al.: Describing small-scale structure in random media using pulse-echo ultrasound. Journal of Acoustical Society of America 87, 179–192 (1990)CrossRefGoogle Scholar
  7. 7.
    Wagner, R.F., et al.: Statistical properties of radio-frequency and envelope-detected signals with applications to medical ultrasound. J. Opt. Soc. Am. A 4, 910–922 (1987)CrossRefGoogle Scholar
  8. 8.
    Lizzi, F.L., et al.: Relationship of ultrasonic spectral parameters to features of tissue microscructure. IEEE Transactions on Ultrasononics, Ferroelectrics and Frequency Control 33, 319–333 (1986)Google Scholar
  9. 9.
    Ueda, M., Ozawa, Y.: Spectral analysis of echoes for backscattering coefficient measurement. The Journal of the Acoustical Society of America 77, 38–47 (1985)CrossRefzbMATHGoogle Scholar
  10. 10.
    Nicholas, D., et al.: Evaluation of backscattering coefficients for excised human tissues: Principles and techniques. Ultrasound in Medicine & Biology 8, 7–15 (1982)CrossRefGoogle Scholar
  11. 11.
    Treece, G., et al.: Ultrasound attenuation measurement in the presence of scatterer variation for reduction of shadowing and enhancement. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control 52, 2346–2360 (2005)CrossRefGoogle Scholar
  12. 12.
    Audière, S., Charbit, M., Angelini, E.D., Oudry, J., Sandrin, L.: Measurement of the skin-liver capsule distance on ultrasound RF data for 1D transient elastography. In: Jiang, T., Navab, N., Pluim, J.P.W., Viergever, M.A. (eds.) MICCAI 2010. LNCS, vol. 6362, pp. 34–41. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  13. 13.
    Oudry, J., et al.: Copolymer-in-oil phantom materials for elastography. Ultrasound Med. Biol. 35, 1185–1197 (2009)CrossRefGoogle Scholar
  14. 14.
    Insana, M.F., Hall, T.J.: Parametric ultrasound imaging from backscatter coefficient measurements: Image formation and interpretation. Ultrasonic Imaging 12, 245–267 (1990)CrossRefGoogle Scholar
  15. 15.
    Wear, K.A., et al.: Measurements of ultrasonic backscatter coefficients in human liver and kidney in vivo. The Journal of the Acoustical Society of America 98, 1852–1857 (1995)CrossRefGoogle Scholar
  16. 16.
    Machado, C.B., et al.: Characterization of in vitro healthy and pathological human liver tissue periodicity using backscattered ultrasound signals. Ultrasound in Medicine & Biology 32, 649–657 (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Stéphane Audière
    • 1
    • 2
  • Elsa D. Angelini
    • 1
  • Maurice Charbit
    • 1
  • Véronique Miette
    • 2
  1. 1.Institut TelecomTelecom ParisTech, CNRS LTCIParisFrance
  2. 2.Research and Development DepartmentEchosensParisFrance

Personalised recommendations