Time Domain Simulation of Harmonic Ultrasound Images and Beam Patterns in 3D Using the k-space Pseudospectral Method

  • Bradley E. Treeby
  • Mustafa Tumen
  • B. T. Cox
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6891)


A k-space pseudospectral model is developed for the fast full-wave simulation of nonlinear ultrasound propagation through heterogeneous media. The model uses a novel equation of state to account for nonlinearity in addition to power law absorption. The spectral calculation of the spatial gradients enables a significant reduction in the number of required grid nodes compared to finite difference methods. The model is parallelized using a graphical processing unit (GPU) which allows the simulation of individual ultrasound scan lines using a 256 × 256 × 128 voxel grid in less than five minutes. Several numerical examples are given, including the simulation of harmonic ultrasound images and beam patterns using a linear phased array transducer.


ultrasound simulation nonlinear k-space methods GPU 


  1. 1.
    Aanonsen, S.I., Barkve, T., Tjotta, J.N., Tjotta, S.: Distortion and harmonic generation in the nearfield of a finite amplitude sound beam. J. Acoust. Soc. Am. 75(3), 749–768 (1984)CrossRefzbMATHGoogle Scholar
  2. 2.
    Baker, A.C., Berg, A.M., Sahin, A., Tjotta, J.N.: The nonlinear pressure field of plane, rectangular apertures: Experimental and theoretical results. J. Acoust. Soc. Am. 97(6), 3510–3517 (1995)CrossRefGoogle Scholar
  3. 3.
    Cox, B.T., Kara, S., Arridge, S.R., Beard, P.C.: k-space propagation models for acoustically heterogeneous media: Application to biomedical photoacoustics. J. Acoust. Soc. Am. 121(6), 3453–3464 (2007)CrossRefGoogle Scholar
  4. 4.
    Daoud, M.I., Lacefield, J.C.: Distributed three-dimensional simulation of B-mode ultrasound imaging using a first-order k-space method. Phys. Med. Biol. 54(17), 5173–5192 (2009)CrossRefGoogle Scholar
  5. 5.
    Hamilton, M.F., Blackstock, D.T. (eds.): Nonlinear Acoustics. Acoustical Society of America, Melville (2008)Google Scholar
  6. 6.
    Jensen, J.A., Svendsen, N.B.: Calculation of pressure fields from arbitrarily shaped, apodized, and excited ultrasound transducers. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 39(2), 262–267 (1992)CrossRefGoogle Scholar
  7. 7.
    Karamalis, A., Wein, W., Navab, N.: Fast Ultrasound Image Simulation Using the Westervelt Equation. In: Jiang, T., Navab, N., Pluim, J.P.W., Viergever, M.A. (eds.) MICCAI 2010. LNCS, vol. 6361, pp. 243–250. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  8. 8.
    Pinton, G.F., Dahl, J., Rosenzweig, S., Trahey, G.E.: A heterogeneous nonlinear attenuating full-wave model of ultrasound. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 56(3), 474–488 (2009)CrossRefGoogle Scholar
  9. 9.
    Szabo, T.L.: Diagnostic Ultrasound Imaging. Elsevier, Burlington (2004)Google Scholar
  10. 10.
    Tabei, M., Mast, T.D., Waag, R.C.: A k-space method for coupled first-order acoustic propagation equations. J. Acoust. Soc. Am. 111(1), 53–63 (2002)CrossRefGoogle Scholar
  11. 11.
    Tillett, J.C., Daoud, M.I., Lacefield, J.C., Waag, R.C.: A k-space method for acoustic propagation using coupled first-order equations in three dimensions. J. Acoust. Soc. Am. 126(3), 1231–1244 (2009)CrossRefGoogle Scholar
  12. 12.
    Treeby, B.E., Cox, B.T.: k-Wave: MATLAB toolbox for the simulation and reconstruction of photoacoustic wave fields. J. Biomed. Opt. 15(2), 021314 (2010)CrossRefGoogle Scholar
  13. 13.
    Treeby, B.E., Cox, B.T.: Modeling power law absorption and dispersion for acoustic propagation using the fractional Laplacian. J. Acoust. Soc. Am. 127(5), 2741–2748 (2010)CrossRefGoogle Scholar
  14. 14.
    Wein, W., Brunke, S., Khamene, A., Callstrom, M.R., Navab, N.: Automatic CT-ultrasound registration for diagnostic imaging and image-guided intervention. Med. Image Anal. 12(5), 577–585 (2008)CrossRefGoogle Scholar
  15. 15.
    Wojcik, G.L., Mould, J., Ayter, S., Carcione, L.M.: A study of second harmonic generation by focused medical transducer pulses. In: IEEE Ultrasonics Symposium Proceedings (Cat. No. 98CH36102), pp. 1583–1588 (1998)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Bradley E. Treeby
    • 1
  • Mustafa Tumen
    • 2
  • B. T. Cox
    • 2
  1. 1.College of Engineering and Computer ScienceThe Australian National UniversityAustralia
  2. 2.Department of Medical Physics and BioengineeringUniversity College LondonUK

Personalised recommendations