Advertisement

Layered Surface Fluid Simulation for Surgical Training

  • Louis Borgeat
  • Philippe Massicotte
  • Guillaume Poirier
  • Guy Godin
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6891)

Abstract

We present a novel approach to fluid simulation over complex dynamic geometry designed for the specific context of virtual surgery simulation. The method combines a surface-based fluid simulation model with a multi-layer depth peeling representation to allow realistic yet efficient simulation of bleeding on complex surfaces undergoing geometry and topology modifications. Our implementation allows for fast fluid propagation and accumulation over the entire scene, and runs on the GPU at a constant low cost that is independent of the amount of blood in the scene. The proposed bleeding simulation is integrated in a complete simulator for brain tumor resection, where trainees have to manage blood aspiration and tissue/vessel cauterization while they perform virtual surgery tasks.

Keywords

visual simulation GPU fluid simulation bleeding cauterization aspiration depth peeling surgery neurosurgery 

References

  1. 1.
    Andersson, L.: Real-Time Fluid Dynamics for Virtual Surgery. Master’s thesis, Engineering Physics Program, Chalmers University of Technology (2005)Google Scholar
  2. 2.
    Basdogan, C., Ho, C.H., Srinivasan, M.A.: Simulation of tissue cutting and bleeding for laparoscopic surgery using auxiliary surfaces. In: Medicine Meets Virtual Reality (MMVR7) Conference, pp. 38–44. IOS Press, Amsterdam (1999)Google Scholar
  3. 3.
    Everitt, C.: Interactive order-independent transparency. White paper, NVIDIA (2001)Google Scholar
  4. 4.
    Kass, M., Miller, G.: Rapid, stable fluid dynamics for computer graphics. In: 17th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH 1990, pp. 49–57. ACM, New York (1990)CrossRefGoogle Scholar
  5. 5.
    Kerwin, T., Shen, H.W., Stredney, D.: Enhancing realism of wet surfaces in temporal bone surgical simulation. IEEE Transactions on Visualization and Computer Graphics 15(5), 747–758 (2009)CrossRefGoogle Scholar
  6. 6.
    Mei, X., Decaudin, P., Hu, B.G.: Fast hydraulic erosion simulation and visualization on GPU. In: 15th Pacific Conference on Computer Graphics and Applications (PG 2007), pp. 47–56. IEEE Computer Society, Los Alamitos (2007)CrossRefGoogle Scholar
  7. 7.
    Müller, M., Schirm, S., Teschner, M.: Interactive blood simulation for virtual surgery based on smoothed particle hydrodynamics. Technol. Health Care 12, 25–31 (2004)Google Scholar
  8. 8.
    Myers, K.: HLSL blood shader gravity maps. White paper, NVIDIA (July 2004)Google Scholar
  9. 9.
    O’Brien, J., Hodgins, J.: Dynamic simulation of splashing fluids. In: Computer Animation 1995, pp. 198–205. IEEE Computer Society, Washington (1995)Google Scholar
  10. 10.
    Pang, W.M., Qin, J., Chui, Y.P., Wong, T.T., Leung, K.S., Heng, P.A.: Orthopedics surgery trainer with PPU-accelerated blood and tissue simulation. In: Ayache, N., Ourselin, S., Maeder, A. (eds.) MICCAI 2007, Part II. LNCS, vol. 4792, pp. 842–849. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  11. 11.
    Qin, J., Chui, Y.P., Pang, W.M., Choi, K.S., Heng, P.A.: Learning blood management in orthopedic surgery through gameplay. IEEE Computer Graphics and Applications 30(2), 45–57 (2010)CrossRefGoogle Scholar
  12. 12.
    Raghupathi, L., Devarajan, V., Eberhart, R., Jones, D.: Simulation of bleeding during laparoscopic herniorrhaphy. In: Medicine Meets Virtual Reality (MMVR12) Conference, pp. 382–387. IOS Press, Amsterdam (2002)Google Scholar
  13. 13.
    Rianto, S., Li, L., Hartley, B.: Fluid dynamic simulation for cutting in virtual environment. In: Skala, V. (ed.) 16th International Conference in Central Europe on Computer Graphics, Visualization and Computer Vision. University of West Bohemia (2008)Google Scholar
  14. 14.
    Vlachos, A., Peters, J., Boyd, C., Mitchell, J.L.: Curved PN triangles. In: 2001 Symposium on Interactive 3D Graphics, I3D 2001, pp. 159–166. ACM, New York (2001)Google Scholar
  15. 15.
    Št’ava, O., Beneš, B., Brisbin, M., Křivánek, J.: Interactive terrain modeling using hydraulic erosion. In: Gross, M., James, D. (eds.) 2008 Eurographics/ACM SIGGRAPH Symposium on Computer Animation, SCA 2008, pp. 201–210. Eurographics Association, Aire-la-Ville (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Louis Borgeat
    • 1
  • Philippe Massicotte
    • 1
  • Guillaume Poirier
    • 1
  • Guy Godin
    • 1
  1. 1.National Research CouncilCanada

Personalised recommendations