Advertisement

Quantifying Stranded Implant Displacement Following Prostate Brachytherapy

  • Julio Lobo
  • Mehdi Moradi
  • Nick Chng
  • Ehsan Dehghan
  • Gabor Fichtinger
  • William J. Morris
  • Septimiu E. Salcudean
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6891)

Abstract

We aim to compute radioactive stranded-implant displacement during and after prostate brachytherapy. We present the methods used to identify corresponding seeds in planned, intra-operative and post-implant patient data that enable us to compute seed displacements. A minimum cost network flow algorithm is used, on 8 patients, for needle track detection to group seeds into needles that can be matched between datasets. An iterative best line detection algorithm is used both to help with needle detection and to register the different datasets. Our results show that there was an average seed misplacement of 5.08±2.35 mm during the procedure, which then moved another 3.10±1.91 mm by the time the quality assurance CT was taken. Several directional trends in different regions of the prostate were noted and commented on.

Keywords

Prostate Brachytherapy Seed Position RANdom SAmple Consensus Seed Cluster Seed Movement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Morris, W., Keyes, M., Palma, D., Spadinger, I., McKenzie, M., Agranovich, A., Pickles, T., Liu, M., Kwan, W., Wu, J.: Population-based study of biochemical and survival outcomes after permanent 125I brachytherapy for low- and intermediate-risk prostate cancer. Urology 73(4), 860–865 (2009)CrossRefGoogle Scholar
  2. 2.
    Roberson, P.L., Vrinda, N., Daniel, L.M., Raymond, J.W., McLaughlin, P.W.: Effects of seed migration on post-implant dosimetry of prostate brachytherapy. Medical Physics 24, 251–257 (1997)CrossRefGoogle Scholar
  3. 3.
    Pinkawa, M., Gagel, B., Asadpour, B., Piroth, M., Klotz, J., Borchers, H., Jakse, G., Eble, M.: Seed displacements after permanent brachytherapy for prostate cancer in dependence on the prostate level. Strahlentherapie und Onkologie 184, 520–525 (2008) 10.1007/s00066-008-1886-3CrossRefGoogle Scholar
  4. 4.
    Pinkawa, M., Asadpour, B., Piroth, M.D., Gagel, B., Klotz, J., Fischedick, K., Borchers, H., Jakse, G., Eble, M.J.: Rectal dosimetry following prostate brachytherapy with stranded seeds - comparison of transrectal ultrasound intra-operative planning (day 0) and computed tomography-postplanning (day 1 vs. day 30) with special focus on sources placed close to the rectal wall. Radiotherapy and Oncology 91(2), 207–212 (2009)CrossRefGoogle Scholar
  5. 5.
    Usmani, N., Chng, N., Spadinger, I., Morris, W.J.: Quantification of migration of 125iodine rapidstrands in prostate brachytherapy implants in different regions of the prostate. In: Genitourinary Cancers Symposium, vol. 96 (2010)Google Scholar
  6. 6.
    Dehghan, E., Lee, J., Moradi, M., Wen, X., Fichtinger, G., Salcudean, S.E.: Prostate brachytherapy seed reconstruction using C-arm rotation measurement and motion compensation. In: Jiang, T., Navab, N., Pluim, J.P.W., Viergever, M.A. (eds.) MICCAI 2010. LNCS, vol. 6361, pp. 283–290. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  7. 7.
    Chng, N., Spadinger, I., Morris, W., Usmani, N., Salcudean, S.: Prostate brachytherapy postimplant dosimetry: Automatic plan reconstruction of stranded implants. Brachytherapy (2010)Google Scholar
  8. 8.
    Ahuja, R., Magnanti, T., Orlin, J.: Network Flows: Theory, Algorithms, and Applications. Prentice Hall, Englewood Cliffs (1993)zbMATHGoogle Scholar
  9. 9.
    Fischler, M.A., Bolles, R.C.: Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography. Comm. of the ACM, 381–395 (1981)Google Scholar
  10. 10.
    Kay, M.G., Parlikad, A.N.: Material flow analysis of public logistics networks. Progress in Material Handling Research, 205–218 (2002)Google Scholar
  11. 11.
    Wan, G., Wei, Z., Gardi, L., Downey, D.B., Fenster, A.: Brachytherapy needle deflection evaluation and correction. Medical Physics 32(4), 902–909 (2005)CrossRefGoogle Scholar
  12. 12.
    Lagerburg, V., Moerland, M.A., Lagendijk, J.J., Battermann, J.J.: Measurement of prostate rotation during insertion of needles for brachytherapy. Radiotherapy and Oncology 77(3), 318–323 (2005)CrossRefGoogle Scholar
  13. 13.
    Moradi, M., Wen, X., Dehghan, E., Lobo, J., Morris, W.J., Salcudean, S.E.: Needle path detection for brachytherapy dosimetry based on lateral power imaging and template matching. In: IEEE Ultrasonics Symposium, pp. 586–589 (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Julio Lobo
    • 1
  • Mehdi Moradi
    • 1
  • Nick Chng
    • 2
  • Ehsan Dehghan
    • 3
  • Gabor Fichtinger
    • 3
  • William J. Morris
    • 2
  • Septimiu E. Salcudean
    • 1
  1. 1.Department of Electrical and Computer EngineeringUniversity of British ColumbiaVancouverCanada
  2. 2.British Columbia Cancer AgencyCanada
  3. 3.School of ComputingQueen’s UniversityCanada

Personalised recommendations