Advertisement

Model-Updated Image-Guided Minimally Invasive Off-Pump Transcatheter Aortic Valve Implantation

  • Mohamed Esmail Karar
  • Matthias John
  • David Holzhey
  • Volkmar Falk
  • Friedrich-Wilhelm Mohr
  • Oliver Burgert
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6891)

Abstract

This paper presents a method for assisting the placement of stented aortic valve prosthesis during minimally invasive off-pump transcatheter aortic valve implantation (TAVI) under live 2-D X-ray fluoroscopy guidance. The proposed method includes a dynamic overlay of an intra-operative 3-D aortic root mesh model and an estimated target area of valve implantation onto live 2-D fluoroscopic images. This is based on a template-based tracking procedure of a pigtail catheter without further injections of contrast agent. Minimal user-interaction is required to initialize the algorithm and to correct fluoroscopy overlay errors if needed. Retrospective experiments were carried out on ten patient datasets from the clinical routine of the TAVI. The mean displacement errors of the updated aortic root mesh model overlays are less than 2.0 mm without manual overlay corrections. The results show that the guidance performance of live 2-D fluoroscopy is potentially improved when using our proposed method for the TAVIs.

Keywords

Transcatheter aortic valve implantation X-ray fluoroscopy image-guided interventions aortic valve prosthesis 

References

  1. 1.
    Ferrari, E., Sulzer, C., Marcucci, C., Qanadly, S.D., Locca, D., Berdajs, D., Von Segesser, L.K.: Transcatheter Aortic Valve Implantation (TAVI): State of The Art Techniques and Future Perspectives. Swiss. Med. Wkly. 140, w13127 (2010)Google Scholar
  2. 2.
    Walther, T., Dewey, T., Borger, M.A., Kempfert, J., Linke, A., Becht, R., Falk, V., Schuler, G., Mohr, F.W., Mack, M.: Transapical Aortic Valve Implantation: step by step. Ann. Thorac. Surg. 87, 276–283 (2009)CrossRefGoogle Scholar
  3. 3.
    Kempfert, J., Falk, V., Schuler, G., Linke, A., Merk, D., Mohr, F.W., Walther, T.: Dyna-CT During Minimally Invasive Off-Pump Transapical Aortic Valve Implantation. Ann. Thorac. Surg. 88, 2041 (2009)CrossRefGoogle Scholar
  4. 4.
    Karar, M.E., Gessat, M., Walther, T., Falk, V., Burgert, O.: Towards a New Image Guidance System for Assisting Transapical Minimally Invasive Aortic Valve Implantation. In: Conf. Proc. IEEE Eng. Med. Biol. Soc., pp. 3645–3648. IEEE Press, New York (2009)Google Scholar
  5. 5.
    Gessat, M., Merk, D.R., Falk, V., Walther, T., Jacobs, S., Nottling, A., Burgert, O.: A Planning System for Transapical Aortic Valve Implantation. In: Proc. of SPIE Medical Imaging (2009)Google Scholar
  6. 6.
    Zheng, Y., John, M., Liao, R., Boese, J., Kirschstein, U., Georgescu, B., Zhou, S.K., Kempfert, J., Walther, T., Brockmann, G., Comaniciu, D.: Automatic Aorta Segmentation and Valve Landmark Detection in C-Arm CT: Application to Aortic Valve Implantation. In: Jiang, T., Navab, N., Pluim, J.P.W., Viergever, M.A. (eds.) MICCAI 2010. LNCS, vol. 6361, pp. 476–483. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  7. 7.
    John, M., Liao, R., Zheng, Y., Nottling, A., Boese, J., Kirschstein, U., Kempfert, J., Walther, T.: System to Guide Transcatheter Aortic Valve Implantations Based on Interventional C-arm CT Imaging. In: Jiang, T., Navab, N., Pluim, J.P.W., Viergever, M.A. (eds.) MICCAI 2010. LNCS, vol. 6361, pp. 375–382. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  8. 8.
    Ming, L., Kapoor, A., Mazilu, D., Horvath, K.A.: Pneumatic Actuated Robotic Assistant System for Aortic Valve Replacement Under MRI Guidance. IEEE Trans. on Biomed. Eng. 58, 443–451 (2011)CrossRefGoogle Scholar
  9. 9.
    Condurache, A.P., Aach, T., Eck, K., Bredno, J.: Fast Detection and Processing of Arbitrary Contrast Agent Injections in Coronary Angiography and Fluoroscopy. In: Proc. of Bildverarbeitung fuer die Medizin (2004)Google Scholar
  10. 10.
    Kong, W.K., Zhang, D., Li, W.: Palmprint Feature Extraction Using 2-D Gabor Filters. J. Pattern Recognition 36, 2339–2347 (2003)CrossRefGoogle Scholar
  11. 11.
    Briechle, K., Hanebeck, U.D.: Template Matching Using Fast Normalized Cross Correlation. In: Proc. of SPIE Optical Pattern Recognition XII (2001)Google Scholar
  12. 12.
    Atasoya, S., Groher, M., Darko, Z., Glocker, B., Waggershauser, T., Pfister, M., Navab, N.: Real-Time Respiratory Motion Tracking: Roadmap Correction for Hepatic Artery Catheterizations. In: Proc. of SPIE Medical Imaging (2008)Google Scholar
  13. 13.
    Visualization Toolkit, Kitware Inc., http://www.vtk.org

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Mohamed Esmail Karar
    • 1
  • Matthias John
    • 2
  • David Holzhey
    • 3
  • Volkmar Falk
    • 4
  • Friedrich-Wilhelm Mohr
    • 1
    • 3
  • Oliver Burgert
    • 1
  1. 1.Innovation Center Computer Assisted Surgery (ICCAS)University of LeipzigGermany
  2. 2.Healthcare SectorSiemens AGForchheimGermany
  3. 3.Department of Cardiac Surgery, Heart CenterUniversity of LeipzigGermany
  4. 4.Division of Heart and Vascular SurgeryUniversity HospitalZurichSwitzerland

Personalised recommendations