Robust and Fast Contrast Inflow Detection for 2D X-ray Fluoroscopy

  • Terrence Chen
  • Gareth Funka-Lea
  • Dorin Comaniciu
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6891)


2D X-ray fluoroscopy is widely used in computer assisted and image guided interventions because of the real time visual guidance it can provide to the physicians. During cardiac interventions, acquisitions of angiography are often used to assist the physician in visualizing the blood vessel structures, guide wires, or catheters, localizing bifurcations, estimating severity of a lesion, or observing the blood flow. Computational algorithms often need to process differently to frames with or without contrast medium. In order to automate this process and streamline the clinical workflow, a fully automatic contrast inflow detection algorithm is proposed. The robustness of the algorithm is validated by more than 1300 real fluoroscopic scenes. The algorithm is computationally efficient; a sequence with 100 frames can be processed within a second.


Contrast detection fluoroscopy vessel detection 


  1. 1.
    Chen, T., Zhang, W., Good, S., Zhou, S., Comaniciu, D.: Automatic ovarian follicle quantification from 3d ultrasound data using global/local context. In: ICCV (2009)Google Scholar
  2. 2.
    Condurache, A., Aach, T., Eck, K., Bredno, J.: Fast Detection and Processing of Arbitrary Contrast Agent Injections in Coronary Angiography and Fluoroscopy. In: Bildverarbeitung fur die Medizin, Berlin, pp. 5–9 (2004)Google Scholar
  3. 3.
    Cortes, C., Vapnik, V.: Support-Vector Networks. Machine Learning 20 (1995)Google Scholar
  4. 4.
    Frangi, A., Niessen, W., Vincken, K., Viergever, M.: Multiscale vessel enhancement filtering. In: Wells, W.M., Colchester, A.C.F., Delp, S.L. (eds.) MICCAI 1998. LNCS, vol. 1496, pp. 130–137. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  5. 5.
    Freeman, W.T., Adelson, E.H.: The Design and Use of Steerable Filters. PAMI 13(9), 891–906 (1991)CrossRefGoogle Scholar
  6. 6.
    John, M., Liao, R., Zheng, Y., Nöttling, A., Boese, J., Kirschstein, U., Kempfert, J., Walther, T.: System to Guide Transcatheter Aortic Valve Implantations Based on Interventional C-Arm CT Imaging. In: Jiang, T., Navab, N., Pluim, J.P.W., Viergever, M.A. (eds.) MICCAI 2010. LNCS, vol. 6361, pp. 375–382. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  7. 7.
    Koolen, J.J., Vanhet Veer, M., Hanekamp, C.E.E.: A StentBoost image enhancement: first clincal experience. In: MEDICAMUNDI: Clinical Applications (2005)Google Scholar
  8. 8.
    Tu, Z.: Probablistic Bossting-Tree: Learning discriminative models for classfication, recognition, and clustering. In: ICCV (2005)Google Scholar
  9. 9.
    Viola, P., Jones, M.: Robust Real-time Object Detection. IJCV (2002)Google Scholar
  10. 10.
    Wang, P., Chen, T., Zhu, Y., Zhang, W., Zhou, K., Comaniciu, D.: Robust Guidewire Tracking in Fluoroscopy. In: CVPR (2009)Google Scholar
  11. 11.
    Zheng, Y., Barbu, A., Georgescu, B., Scheuering, M., Comaniciu, D.: Four-chamber heart modeling and automatic segmentation for 3d cardiac ct volumes using marginal space learning and steerable features. IEEE Trans. on Med. Img. 27(11), 1668–1681 (2008)CrossRefGoogle Scholar
  12. 12.
    Zheng, Y., Loziczonek, M., Georgescu, B., Zhou, S., Vega-Higuera, F., Comaniciu, D.: Machine Learning Based Vesselness Measurement for Coronary Artery Segmentation in Cardiac CT Volumes. In: SPIE Med. Img. (2011)Google Scholar
  13. 13.
    Zhu, Y., Prummer, S., Wang, P., Chen, T., Comaniciu, D., Ostermeier, M.: Dynamic Layer Separation for Coronary DSA and Enhancement in Fluoroscopic Sequences. In: Yang, G.-Z., Hawkes, D., Rueckert, D., Noble, A., Taylor, C. (eds.) MICCAI 2009. LNCS, vol. 5762, pp. 877–884. Springer, Heidelberg (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Terrence Chen
    • 1
  • Gareth Funka-Lea
    • 1
  • Dorin Comaniciu
    • 1
  1. 1.Corporate ResearchSiemens CorporationPrincetonUSA

Personalised recommendations