Advertisement

Towards Real-Time 3D US to CT Bone Image Registration Using Phase and Curvature Feature Based GMM Matching

  • Anna Brounstein
  • Ilker Hacihaliloglu
  • Pierre Guy
  • Antony Hodgson
  • Rafeef Abugharbieh
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6891)

Abstract

In order to use pre-operatively acquired computed tomography (CT) scans to guide surgical tool movements in orthopaedic surgery, the CT scan must first be registered to the patient’s anatomy. Three-dimensional (3D) ultrasound (US) could potentially be used for this purpose if the registration process could be made sufficiently automatic, fast and accurate, but existing methods have difficulties meeting one or more of these criteria.We propose a near-real-time US-to-CT registration method that matches point clouds extracted from local phase images with points selected in part on the basis of local curvature. The point clouds are represented as Gaussian Mixture Models (GMM) and registration is achieved by minimizing the statistical dissimilarity between the GMMs using an L2 distance metric. We present quantitative and qualitative results on both phantom and clinical pelvis data and show a mean registration time of 2.11 s with a mean accuracy of 0.49 mm.

Keywords

US-CT registration point cloud matching local phase features curvature Gaussian mixture model registration 

References

  1. 1.
    Penney, G.P., Edwards, P.J., King, A.P., Blackall, J.M., Batchelor, P.G., Hawkes, D.J.: A stochastic iterative closest point algorithm (stochastICP). In: Niessen, W.J., Viergever, M.A. (eds.) MICCAI 2001. LNCS, vol. 2208, pp. 762–769. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  2. 2.
    Barratt, D.C., Penney, G.P., Chan, C.S.K., Slomczykowski, M., Carter, T.J., Edwards, P.J., Hawkes, D.J.: Self-calibrating ultrasound-to-CT bone registration. In: Duncan, J.S., Gerig, G. (eds.) MICCAI 2005. LNCS, vol. 3749, pp. 605–612. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  3. 3.
    Moghari, M.H., Abolmaesumi, P.: Point-Based Rigid-Body Registration Using an Unscented Kalman Filter. IEEE Transactions on Medical Imaging 26(12), 1708–1728 (2007)CrossRefGoogle Scholar
  4. 4.
    Kowal, J., Amstutz, C., Langlotz, F., Talib, H., Ballester, M.G.: Automated Bone Contour Detection in Ultrasound B-mode Images for Minimally Invasive Registration in Computer Assisted Surgery an in Vitro Evaluation. The International Journal of Medical Robotics and Computer Assisted Surgery 3(4), 341–348 (2007)CrossRefGoogle Scholar
  5. 5.
    Winter, S., Brendel, B., Pechlivanis, I., Schmieder, K., Igel, C.: Registration of CT and Intraoperative 3-D Ultrasound Images of the Spine Using Evolutionary and Gradient-Based Methods. IEEE Transactions on Evolutionary Computation 12(3), 284–296 (2008)CrossRefGoogle Scholar
  6. 6.
    Penney, G., Barratt, D., Chan, C., Slomczykowski, M., Carter, T., Edwards, P., Hawkes, D.: Cadaver Validation of Intensity-Based Ultrasound to CT Registration. Medical Image Analysis 10(3), 385–395 (2006)CrossRefGoogle Scholar
  7. 7.
    Wein, W., Brunke, S., Khamene, A., Callstrom, M.R., Navab, N.: Automatic CT-ultrasound registration for diagnostic imaging and image-guided intervention. Medical Image Analysis 12(5), 577–585 (2008)CrossRefGoogle Scholar
  8. 8.
    Gill, S., Abolmaesumi, P., Fichtinger, G., Boisvert, J., Pichora, D., Borshneck, D., Mousavi, P.: Biomechanically Constrained Groupwise Ultrasound to CT Registration of the Lumbar Spine. Medical Image Analysis (August 2010) (in press)Google Scholar
  9. 9.
    Hacihaliloglu, I., Abugharbieh, R., Hodgson, A.J., Rohling, R.: Bone segmentation and fracture detection in ultrasound using 3D local phase features. In: Metaxas, D., Axel, L., Fichtinger, G., Székely, G. (eds.) MICCAI 2008, Part I. LNCS, vol. 5241, pp. 287–295. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  10. 10.
    Gray, A.: Modern Differential Geometry of Curves and Surfaces with Mathematica, Boca Raton, FL, pp. 373–380 (1997)Google Scholar
  11. 11.
    Jian, B., Vemuri, B.: Robust Point Set Registration Using Gaussian Mixture Models. IEEE Transactions on Pattern Analysis and Machine Intelligence (2011)Google Scholar
  12. 12.
    Phillips, R.: The Accuracy of Surgical Navigation for Orthopaedic Surgery. Current Orthopaedics 21(3), 180–192 (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Anna Brounstein
    • 1
  • Ilker Hacihaliloglu
    • 1
  • Pierre Guy
    • 2
  • Antony Hodgson
    • 3
  • Rafeef Abugharbieh
    • 1
  1. 1.Department of Electrical and Computer EngineeringUniversity of British ColumbiaVancouverCanada
  2. 2.Department of OrthopaedicsUniversity of British ColumbiaVancouverCanada
  3. 3.Department of Mechanical EngineeringUniversity of British ColumbiaVancouverCanada

Personalised recommendations