Deformable Registration of Bronchoscopic Video Sequences to CT Volumes with Guaranteed Smooth Output

  • Tobias Reichl
  • Xiongbiao Luo
  • Manuela Menzel
  • Hubert Hautmann
  • Kensaku Mori
  • Nassir Navab
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6891)


We present a novel approach to tracking of flexible bronchoscopes by modeling the output as spatially continuous over time. Bronchoscopy is a widespread clinical procedure for diagnosis and treatment of lung diseases and navigation systems are highly needed. Tracking of the bronchoscope can be regarded as a deformable registration problem. In our approach we use hybrid image-based and electromagnetic tracking, and the bronchoscope pose relative to CT data is interpolated using Catmull-Rom splines for position and SLERP for orientation.

We evaluate the method using ground truth poses manually selected by experts, where mean inter-expert agreement was determined as 1.26 mm. For four dynamic phantom data sets, the accuracy of our method is between 4.13 and 5.93 mm and shown to be equivalent to previous methods. We significantly improve inter-frame smoothness from 2.35–3.08 mm to 1.08–1.51 mm. Our method provides a more realistic and physically plausible solution with significantly less jitter. This quantitative result is confirmed by video output, which is much more consistent and robust, with fewer occasions of tracking loss or unexpected movement.


Graphic Process Unit Electromagnetic Tracking Deformable Registration Tracking Loss Unexpected Movement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Solomon, S.B., White Jr., P., Wiener, C.M., Orens, J.B., Wang, K.P.: Three-dimensional CT-guided bronchoscopy with a real-time electromagnetic position sensor: a comparison of two image registration methods. Chest 118, 1783–1787 (2000)CrossRefGoogle Scholar
  2. 2.
    Mori, K., Deguchi, D., Akiyama, K., Kitasaka, T., Maurer Jr., C.R., Suenaga, Y., Takabatake, H., Mori, M., Natori, H.: Hybrid bronchoscope tracking using a magnetic tracking sensor and image registration. In: Duncan, J.S., Gerig, G. (eds.) MICCAI 2005. LNCS, vol. 3750, pp. 543–550. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  3. 3.
    Luo, X., Feuerstein, M., Sugiura, T., Kitasaka, T., Imaizumi, K., Hasegawa, Y., Mori, K.: Towards hybrid bronchoscope tracking under respiratory motion: evaluation on a dynamic motion phantom. In: Proc. SPIE, vol. 7625, p. 76251B (2010)Google Scholar
  4. 4.
    Luó, X., Reichl, T., Feuerstein, M., Kitasaka, T., Mori, K.: Modified hybrid bronchoscope tracking based on sequential monte carlo sampler: Dynamic phantom validation. In: Kimmel, R., Klette, R., Sugimoto, A. (eds.) ACCV 2010, Part III. LNCS, vol. 6494, pp. 409–421. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  5. 5.
    Soper, T., Haynor, D., Glenny, R., Seibel, E.: In vivo validation of a hybrid tracking system for navigation of an ultrathin bronchoscope within peripheral airways. IEEE Transactions on Biomedical Engineering 57, 736–745 (2010)CrossRefGoogle Scholar
  6. 6.
    Hummel, J., Figl, M., Bax, M., Shahidi, R., Bergmann, H., Birkfellner, W.: Evaluation of dynamic electromagnetic tracking deviation. In: Proc. SPIE, vol. 7261, p. 72612U (2009)Google Scholar
  7. 7.
    Catmull, E., Rom, R.: A class of interpolating splines. Computer Aided Geometric Design, 317–326 (1974)Google Scholar
  8. 8.
    Shoemake, K.: Animating rotation with quaternion curves. In: SIGGRAPH (1985)Google Scholar
  9. 9.
    Wengert, C., Reeff, M., Cattin, P., Szekely, G.: Fully automatic endoscope calibration for intraoperative use. In: Bildverarbeitung in der Medizin (2006)Google Scholar
  10. 10.
    Tachihara, M., Ishida, T., Kanazawa, K., Sugawara, A., Watanabe, K., Uekita, K., Moriya, H., Yamazaki, K., Asano, F., Munakata, M.: A virtual bronchoscopic navigation system under X-ray fluoroscopy for transbronchial diagnosis of small peripheral pulmonary lesions. Lung Cancer 57, 322–327 (2007)CrossRefGoogle Scholar
  11. 11.
    Yamamoto, S., Ueno, K., Imamura, F., Matsuoka, H., Nagatomo, I., Omiya, Y., Yoshimura, M., Kusunoki, Y.: Usefulness of ultrathin bronchoscopy in diagnosis of lung cancer. Lung Cancer 46, 43–48 (2004)CrossRefGoogle Scholar
  12. 12.
    Häussinger, K., Ballin, A., Becker, H.D., et al.: Recommendations for quality standards in bronchoscopy. Pneumologie 58, 344–356 (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Tobias Reichl
    • 1
  • Xiongbiao Luo
    • 2
  • Manuela Menzel
    • 3
  • Hubert Hautmann
    • 3
  • Kensaku Mori
    • 4
  • Nassir Navab
    • 1
  1. 1.Computer-Aided Medical ProceduresTUMMünchenGermany
  2. 2.Graduate School of Information ScienceNagoya UniversityJapan
  3. 3.Medizinische Klinik I, Klinikum rechts der IsarTUMMünchenGermany
  4. 4.Information and Communications HeadquartersNagoya UniversityJapan

Personalised recommendations