Advertisement

3D Stent Recovery from One X-Ray Projection

  • Stefanie Demirci
  • Ali Bigdelou
  • Lejing Wang
  • Christian Wachinger
  • Maximilian Baust
  • Radhika Tibrewal
  • Reza Ghotbi
  • Hans-Henning Eckstein
  • Nassir Navab
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6891)

Abstract

In the current clinical workflow of endovascular abdominal aortic repairs (EVAR) a stent graft is inserted into the aneurysmatic aorta under 2D angiographic imaging. Due to the missing depth information in the X-ray visualization, it is highly difficult in particular for junior physicians to place the stent graft in the preoperatively defined position within the aorta. Therefore, advanced 3D visualization of stent grafts is highly required. In this paper, we present a novel algorithm to automatically match a 3D model of the stent graft to an intraoperative 2D image showing the device. By automatic preprocessing and a global-to-local registration approach, we are able to abandon user interaction and still meet the desired robustness. The complexity of our registration scheme is reduced by a semi-simultaneous optimization strategy incorporating constraints that correspond to the geometric model of the stent graft. Via experiments on synthetic, phantom, and real interventional data, we are able to show that the presented method matches the stent graft model to the 2D image data with good accuracy.

Keywords

Abdominal Aortic Aneurysm Abdominal Aortic Aneurysm Stent Graft Target Registration Error Aortic Stent Graft 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Demirci, S., Manstad-Hulaas, F., Navab, N.: Quantification of aortic deformation after EVAR. In: Miga, M.I., Wong, K.H. (eds.) Medical Imaging: Visualization, Image-Guided Procedures, and Modeling. Proceedings of SPIE. SPIE, vol. 7261, p. 72611U (2009)Google Scholar
  2. 2.
    Frangi, A.F., Niessen, W.J., Vincken, K.L., Viergever, M.A.: Multiscale vessel enhancement filtering. In: Wells, W.M., Colchester, A.C.F., Delp, S.L. (eds.) MICCAI 1998. LNCS, vol. 1496, pp. 130–137. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  3. 3.
    Hartley, R., Zisserman, A.: Multiple View Geometry, 2nd edn. University Press, Cambridge (2003)zbMATHGoogle Scholar
  4. 4.
    Klein, A., Renema, W., Schultze Kool, L., Slump, C.: Initial steps towards automatic segmentation of the wire frame of stent grafts in ct data. In: 4th Annual Symposium of the IEEE-EMBS Benelux Chapter, pp. 116–119. IEEE-EMBS Benelux Chapter, Enschede (2009)Google Scholar
  5. 5.
    Klein, A., Oostveen, L.J., Greuter, M.J.W., Hoogeveen, Y., Schultze Kool, L.J., Slump, C.H., Renema, W.K.J.: Detectability of motions in aaa with ecg-gated cta: a quantitative study. Med. Phys. 36(10), 4616–4624 (2009)CrossRefGoogle Scholar
  6. 6.
    Liao, R., Tan, Y., Sundar, H., Pfister, M., Kamen, A.: An efficient graph-based deformable 2D/3D registration algorithm with applications for abdominal aortic aneurysm interventions. In: Liao, H., Edwards, P.J., Pan, X., Fan, Y., Yang, G.-Z. (eds.) MIAR 2010. LNCS, vol. 6326, pp. 561–570. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  7. 7.
    Mattes, J., Steingruber, I., Netzer, M., Fritscher, K., Kopf, H., Jaschke, W., Schubert, R.: Quantification of the migration and deformation of abdominal aortic aneurysm stent grafts. In: Reinhardt, J.M., Pluim, J.P.W. (eds.) Medical Imaging: Image Processing. Proceedings of SPIE, vol. 6144, p. 61440V. SPIE (2006)Google Scholar
  8. 8.
    Raheem, A., Carrell, T., Modarai, B., Penney, G.: Non-rigid 2D-3D image registration for use in endovascular repair of abdominal aortic aneurysms. In: Bhalerao, A.H., Rajpoot, N.M. (eds.) Proceedings of Medical Image Understanding and Analysis, pp. 153–158. University of Warwick (2010)Google Scholar
  9. 9.
    Sidorov, K., Richmond, S., Marshall, D.: An efficient stochastic approach to groupwise non-rigid image registration. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2208–2213. IEEE Press, Los Alamitos (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Stefanie Demirci
    • 1
  • Ali Bigdelou
    • 1
  • Lejing Wang
    • 1
  • Christian Wachinger
    • 1
  • Maximilian Baust
    • 1
  • Radhika Tibrewal
    • 1
  • Reza Ghotbi
    • 2
  • Hans-Henning Eckstein
    • 3
  • Nassir Navab
    • 1
  1. 1.Computer Aided Medical ProceduresTechnische Universität MünchenGermany
  2. 2.Vascular SurgeryKlinikum München-PasingGermany
  3. 3.Department of Vascular SurgeryKlinikum rechts der IsarGermany

Personalised recommendations