Skip to main content

Exploring Functional Connectivity Networks in fMRI Data Using Clustering Analysis

  • Conference paper
Brain Informatics (BI 2011)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6889))

Included in the following conference series:

Abstract

Some approaches have been proposed for exploring functional brain connectivity networks from functional magnetic resonance imaging (fMRI) data. Based on a popular algorithm K-means and an effective clustering algorithm called Affinity Propagation (AP), a combined clustering method to explore the functional brain connectivity networks is presented. In the proposed method, K-means is used for data reduction and AP is used for clustering. Without setting the seed of ROI in advance, the proposed method is especially appropriate for the analysis of fMRI data collected with a periodic experimental paradigm. The validity of the proposed method is illustrated by experiments on a simulated dataset and a human dataset. Receiver operating characteristic (ROC) analysis was performed on the simulated dataset. Results show that this method can efficiently and robustly detect the actual functional response with typical signal changes in the aspect of noise ratio, phase and amplitude. On the human dataset, the proposed method discovered brain networks which are compatible with the findings of previous studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Friston, K.J., Frith, C.D., Liddle, P.F., Frackowiak, R.S.J.: Functional connectivity. The Principal Component Analysis of Large (PET) Data sets. J. Cereb. Blood Flow Metab. 13, 5–14 (1993)

    Article  Google Scholar 

  2. Bressler, S.L., Menon, V.: Large-scale Brain Networks in Cognition. Emerging Methods and Principles. Trends in Cognitive Sciences 14(6), 277–290 (2010)

    Article  Google Scholar 

  3. Zuo, X.-n., Kelly, C., Adelstein, J.S., Klein, D.F., Castellanos, F.X., Milham, M.P.: Reliable Intrinsic Connectivity Networks: Test – Retest Evaluation Using ICA and Dual Regression Approach. NeuroImage 49(3), 2163–2177 (2010)

    Article  Google Scholar 

  4. Ogawa, S., Lee, T.M., Kay, A.R., Tank, D.W.: Brain Magnetic Resonance Imaging with Contrast Dependent on Blood Oxygenation. Proceedings of the National Academy of Sciences 87, 9868–9872 (1990)

    Article  Google Scholar 

  5. Meyer-baese, A., Wismueller, A., Lange, O.: Comparison of Two Exploratory Data Analysis Methods for fMRI: Unsupervised Clustering versus Independent Component Analysis. IEEE Transactions on Information Technology in Biomedicine 8(3), 387–398 (2004)

    Article  Google Scholar 

  6. Goutte, C., Toft, P., Rostrup, E., Nielsen, F.A., Hansen, L.K.: On Clustering fMRI Time Series. NeuroImage 9, 298–310 (1999)

    Article  Google Scholar 

  7. Chuang, K., Chiu, M., Lin, C.C., Chen, J.: Model-free Functional MRI Analysis Using Kohonen Clustering Neural Network and Fuzzy C-means. IEEE Transactions on Medical Imaging 18, 1117–1128 (1999)

    Article  Google Scholar 

  8. Baumgartner, R., Ryner, L., Richter, W., Summers, R., Jarmasz, M., Somorjai, R.: Comparison of Two Exploratory Data Analysis Methods for fMRI.: Fuzzy Clustering vs. Principal Component Analysis. Magnetic Resonance in Medicine 18, 89–94 (2000)

    Google Scholar 

  9. McKeown, M.J., Makeig, S., Brown, G.G., Jung, T.P., Kindermann, S.S., Bell, A.J., Spjnowski, T.J.: Analysis of fMRI Data by Blind Separation into Independent Spatial Components. Human Brain Mapping 6, 160–188 (1998)

    Article  Google Scholar 

  10. Dimitriadou, E., Barth, M., Windischberger, C., Hornik, K., Moser, E.: A Quantitative Comparison of Functional MRI Cluster Analysis. Artificial Intelligence in Medicine 31, 57–71 (2004)

    Article  Google Scholar 

  11. Fadili, M.J., Ruan, S., Bloyet, D., Mazoyer, B.: A Multistep Unsupervised Fuzzy Clustering Analysis of fMRI Time Series. Human Brain Mapping 10, 160–178 (2000)

    Article  Google Scholar 

  12. Bandettini, P.A., Jesmanowicz, A., Wong, E.C., Hyde, J.S.: Processing Strategies for Time-course Data Sets in Functional MRI of the Human Brain. Magnetic Resonance in Medicine 30(2), 161–173 (1993)

    Article  Google Scholar 

  13. Ye, J., Lazar, N.A., Li, Y.: Geostatistical Analysis in Clustering fMRI Time Series. Statistics in Medicine 28(19), 2490–2508 (2009)

    Article  MathSciNet  Google Scholar 

  14. Frey, B.J., Dueck, D.: Clustering by Passing Messages between Data Points. Science 315(5814), 972–976 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  15. Duda, R.O., Hart, P.E.: Pattern Classification and Scene Analysis, pp. 189–225. John Wiley & Sons, New York (1973)

    MATH  Google Scholar 

  16. Wu, X., Kumar, V., Quinlan, J.R., Ghosh, J., Yang, Q., Motoda, H., et al.: Top 10 Algorithms in Data Mining. Knowledge and Information Systems, 1–37 (2008)

    Google Scholar 

  17. Sun, C., Wang, Y., Zhao, H.: Web Page Clustering via Partition Adaptive Affinity Propagation. In: Yu, W., He, H., Zhang, N. (eds.) ISNN 2009. LNCS, vol. 5552, pp. 727–736. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  18. Li, C., Dou, L., Yu, S., Liu, D., Lin, Y.: Magnetic Resonance Image Segmentation Based on Affinity Propagation. In: Global Congress on Intelligent Systems, pp. 456–460 (2009)

    Google Scholar 

  19. Maas, L.C., Frederick, B.D., Yurgelun-Todd, D.A., Renshaw, P.F.: Autocovariance Based Analysis of Functional MRI Data. Biological Psychiatry 39, 640–641 (1996)

    Article  Google Scholar 

  20. Yang, J., Zhong, N., Liang, P.P., Wang, J., Yao, Y.Y., Lu, S.F.: Brain Activation Detection by Neighborhood One-class SVM. In: Proceedings of the 2007 IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent Technology – Workshops, pp. 47–51 (2007)

    Google Scholar 

  21. Friston, K.J.: Statistical Parametric Mapping.: The Analysis of Functional Brain Images. Academic Press, London (2006)

    Google Scholar 

  22. Buckner, R.L., Andrews-Hanna, J.R., Schacter, D.L.: The Brain’s Default Network Anatomy, Function, and Relevance to Disease. New York Academy of Sciences 38, 1–38 (2008)

    Article  Google Scholar 

  23. Fransson, P.: Spontaneous Low-frequency BOLD Signal Fluctuations: an FMRI Investigation of the Resting-state Default Mode of Brain Function Hypothesis. Hum. Brain Mapp. 26(1), 15–29 (2005)

    Article  Google Scholar 

  24. Raichle, M., MacLeod, A., Snyder, A.: A default Mode of Brain Function. PNAS 98(2) (2001)

    Google Scholar 

  25. Mantini, D., Corbetta, M., Gianni, M., Luca, G., Del, C.: Large-scale Brain Networks Account for Sustained and Transient Activity During Target Detection. NeuroImage 44(1), 265–274 (2009)

    Article  Google Scholar 

  26. Griffiths, T.D., Rees, G., Rees, A., Green, G.G.R., Witton, C., Rowe, D., et al.: Right Parietal Cortex is Involved in the Perception of Sound Movement in Humans. Nature Neuroscience 1(1) (1998)

    Google Scholar 

  27. Griffiths, T.D., Green, G.G.R., Rees, A., Rees, G.: Human Brain Areas Involved in the Analysis of Auditory Movement. Human Brain Mapping 9, 72–80 (2000)

    Article  Google Scholar 

  28. Wise, R.J.S., Greene, J., Büchel, C., Scott, S.K.: Early Report Brain Regions Involved in Articulation. The Lancet 353, 1057–1061 (1999)

    Article  Google Scholar 

  29. Biswal, B.B., Mennes, M., Zuo, X.-n., Gohel, S., Kelly, C., Smith, S.M., et al.: Toward Discovery Science of Human Brain Function. Proceedings of the National Academy of Sciences 107(10) (2009)

    Google Scholar 

  30. Haynes, J.-D., Rees, G.: Decoding Mental States from Brain Activity in Humans. Neuroscience 7, 523–534 (2006)

    Google Scholar 

  31. Mitchell, T.M., Shinkareva, S.V., Carlson, A., Chang, K.-m., Malave, V.L., et al.: Predicting Human Brain Activity Associated with the Meanings of Nouns. Science 320, 1191–1195 (2008)

    Article  Google Scholar 

  32. Mitchell, T.O.M., Hutchinson, R., Niculescu, R.S., Pereira, F., Wang, X.: Learning to Decode Cognitive States from Brain Images. Machine Learning 57, 145–175 (2004)

    Article  MATH  Google Scholar 

  33. Golland, Y., Golland, P., Bentin, S., Malach, R.: Data-driven Clustering Reveals a Fundamental Subdivision of the Human Cortex into Two Global Systems. Neuropsychologia 46, 540–553 (2008)

    Article  Google Scholar 

  34. Chai, B., Walther, D., Beck, D.: Exploring Functional Connectivity of the Human Brain Using Multivariate Information Analysis. In: Neural Information, NIPS, pp. 1–9 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Liu, D., Zhong, N., Qin, Y. (2011). Exploring Functional Connectivity Networks in fMRI Data Using Clustering Analysis. In: Hu, B., Liu, J., Chen, L., Zhong, N. (eds) Brain Informatics. BI 2011. Lecture Notes in Computer Science(), vol 6889. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23605-1_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-23605-1_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-23604-4

  • Online ISBN: 978-3-642-23605-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics