Skip to main content

Robust and Stable Small-World Topology of Brain Intrinsic Organization during Pre- and Post-Task Resting States

  • Conference paper
Brain Informatics (BI 2011)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6889))

Included in the following conference series:

  • 896 Accesses

Abstract

Brain functional network studies have demonstrated the small-world topology as the nature of large-scale spontaneous brain activity. Studies have also revealed that the temporal coherence of spontaneous activity could be reshaped during task-dependent (or post-task) resting states within local spatial patterns such as task-related and the default-mode networks. However, to our best knowledge, it is still a lack of rigorous investigations that whether the small-world topology of spontaneous intrinsic organization remains robust and stable during different resting states. To address the problem, we recorded blood oxygen level-dependent (BOLD) signals from two rests (namely, pre- and post-task resting states) before and after a simple semantic-matching task, and investigated the preceding task influences on the topology of the large-scale spontaneous intrinsic organization during the post-task resting state. The major findings are that the small-world configuration of spontaneous intrinsic organization remains robust and stable during resting states regardless of preceding task influences.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Fox, M.D., Raichle, M.E.: Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nat. Rev. Neurosci. 8, 700–711 (2007)

    Article  Google Scholar 

  2. Raichle, M.E., Mintun, M.A.: Brain work and brain imaging. Annu. Rev. Neurosci. 29, 449–476 (2006)

    Article  Google Scholar 

  3. Sporns, O., Chialvo, D.R., Kaiser, M., Hilgetag, C.C.: Organization, development and function of complex brain networks. Trends in Cognitive Sciences 8, 418–425 (2004)

    Article  Google Scholar 

  4. Bassett, D.S., Bullmore, E.D.: Small-world brain networks. Neuroscientist 12, 512–523 (2006)

    Article  Google Scholar 

  5. Bullmore, E.D., Sporns, O.: Complex brain networks: graph theoretical analysis of structural and functional systems. Nature Reviews Neuroscience 10, 186–198 (2009)

    Article  Google Scholar 

  6. Salvador, R., Suckling, J., Coleman, M.R., Pickard, J.D., Menon, D., Bullmore, E.D.: Neurophysiological architecture of functional magnetic resonance images of human brain. Cereb. Cortex 15, 1332–1342 (2005a)

    Article  Google Scholar 

  7. Salvador, R., Suckling, J., Schwarzbauser, C., Bullmore, E.D.: Undirected graphs of frequency-dependent functional connectivity in whole brain networks. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 360, 937–946 (2005b)

    Article  Google Scholar 

  8. Eguíluz, V.M., Chialvo, D.R., Cecchi, G.A., Baliki, M., Apkarian, A.V.: Scale-free brain functional networks. Phys. Rev. Lett. 94, 018102 (2005)

    Article  Google Scholar 

  9. Achard, S., Salvador, R., Whitcher, B., Suckling, J., Bullmore, E.D.: A resilient, low-frequency, small-world human brain functional network with highly connected association cortical hubs. J. Neurosci. 26, 63–72 (2006)

    Article  Google Scholar 

  10. Van den Heuvel, M.P., Stam, C.J., Boersma, M., Hulshoff Pol, H.E.: Small-world and scale-free organization of voxel-based resting-state functional connectivity in the human brain. Neuroimage 43, 528–539 (2008)

    Article  Google Scholar 

  11. Stephan, K.E., Hilgetag, C.C., Burns, G.A.P.C., O’Neill, M.A., Young, M.P., Kö tter, R.: Computational analysis of functional connectivity between areas of primate cerebral cortex. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 355, 111–126 (2000)

    Article  Google Scholar 

  12. Micheloyannis, S., Pachou, E., Stam, C.J., Vourkas, M., Erimaki, S., Tsirka, V.: Using graph theoretical analysis of multi channel EEG to evaluate the neural efficiency hypothesis. Neuroscience Letters 402, 273–277 (2006)

    Article  Google Scholar 

  13. Stam, C.J.: Functional connectivity patterns of human magnetoencephalographic recordings: a ’small-world’ network? Neuroscience Letters 355, 25–28 (2004)

    Article  Google Scholar 

  14. Bassett, D.S., Meyer-Lindenberg, A., Achard, S., Duke, T., Bullmore, E.: Adaptive reconfiguration of fractal small-world human brain functional networks. Proc. Natl. Acad. Sci. U.S.A. 103, 19518–19523 (2006)

    Article  Google Scholar 

  15. Watts, D.J., Strogatz, S.H.: Collective dynamics of ”small-world” networks. Nature 393, 440–442 (1998)

    Article  MATH  Google Scholar 

  16. Sporns, O., Tononi, G., Edelman, G.M.: Theoretical neuroanatomy: relating anatomical and functional connectivity in graphs and cortical connection matrices. Cerebral Cortex 10, 127–141 (2000)

    Article  Google Scholar 

  17. Hilgetag, C.C., Burns, G.A.P.C., O’Neill, M.A., Scannell, J.W.: Anatomical connectivity defines the organization of clusters of cortical areas in the macaque and the cat. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 355, 91–110 (2000)

    Article  Google Scholar 

  18. Latora, V., Marchiori, M.: Economic small-world behaviour in weighted networks. Euro. Phys. JB 32, 249–263 (2003)

    Article  Google Scholar 

  19. Humphries, M.D., Gurney, K., Prescott, T.J.: The brainstem reticular formation is a small-world, not scale-free, network. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 273, 503–511 (2006)

    Article  Google Scholar 

  20. Hagmann, P., Kurant, M., Gigandet, X., Thiran, P., Wedeen, V.J., Meuli, R., Thiran, J.P.: Mapping the structural core of human cerebral cortex. PLoS ONE 2, e597 (2007)

    Article  Google Scholar 

  21. Iturria-Medina, Y., Sotero, R.C., Canales-Rodriguez, E.J., Aleman-Gomez, Y., Melie-Garcia, L.: Studying the human brain ananatomical network via diffusion-weighted MRI and graph theory. NeuroImage 40, 1064–1076 (2008)

    Article  Google Scholar 

  22. Sporns, O., Zwi, J.D.: The small world of the cerebral cortex. Neuroinformatics 2, 145–162 (2004)

    Article  Google Scholar 

  23. Zeki, S., Shipp, S.: The functional logic of cortical connections. Nature 335, 311–317 (1988)

    Article  Google Scholar 

  24. Tononi, G., Edelman, G.M., Sporns, O.: Complexity and coherency: integrating information in the brain. Trends in Cognitive Sciences 2, 474–484 (1998)

    Article  Google Scholar 

  25. Waites, A.B., Stanislavsky, A., Abbott, D.F., Jackson, G.D.: Effect of prior cognitive state on resting state networks measured with functional connectivity. Human Brain Mapping 24, 59–68 (2005)

    Article  Google Scholar 

  26. Albert, N.B., Robertson, E.M., Miall, R.C.: The resting human brain and motor learning. Curr. boil. 19, 1023–1027 (2009)

    Article  Google Scholar 

  27. Lewis, G.M., Baldassarre, A., Committeri, G., Romania, G.L., Corbetta, M.: Learning sculpts the spontaneous activity of the resting human brain. Proc. Natl. Acad. Sci. U.S.A. 106, 17558–17563 (2009)

    Article  Google Scholar 

  28. Wang, Z.J., Liu, J.M., Zhong, N., Qin, Y.L., Zhou, H.Y.: Two Perspectives to Investigate the Intrinsic Organization of the Dynamic and Ongoing Spontaneous Brain Activity in Humans. In: Proc. the 2010 International Joint Conference on Neural Networks (IJCNN 2010), pp. 1–4 (2010)

    Google Scholar 

  29. Zhou, H. Y., Liu, J. Y., Jing, W., Qin, Y.L., Lu, S.F., Yao, Y.Y., Zhong, N.: Basic level advantage and its switching during information retrieval: An fMRI study. In: Yao, Y., Sun, R., Poggio, T., Liu, J., Zhong, N., Huang, J. (eds.) BI 2010. LNCS, vol. 6334, pp. 427–436. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  30. Tzourio-Mazoyer, N., Landeau, B., Papathanassiou, D., Crivello, F., Etard, O., Delcroix, N., Mazoyer, B., Joliot, M.: Automated anatomical labelling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage 15, 273–289 (2002)

    Article  Google Scholar 

  31. Fox, M.D., Snyder, A.Z., Vincent, J.L., Corbetta, M., Van Essen, D.C., Raichle, M.E.: The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc. Natl. Acad. Sci. U.S.A. 102, 9673–9678 (2005)

    Article  Google Scholar 

  32. Jenkins, G.M., Watts, D.G.: Spectral Analysis and Its Applications. Holden-Day, San Francisco (1968)

    MATH  Google Scholar 

  33. Newman, M.E.J.: The structure and function of complex networks. SIAM Rev. 45, 167–256 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  34. Latora, V., Marchiori, M.: Efficient behaviour of small-world networks. Phys. Rev. Lett. 87, 198701 (2001)

    Article  Google Scholar 

  35. Achard, S., Bullmore, E.: Efficiency and cost of economical brain functional networks. PLoS Comput. Biol. 3, e17(2007)

    Article  Google Scholar 

  36. Ledberg, A., Akerman, S., Poland, P.F.: Estimation of the probabilities of 3D clusters in functional brain images. NeuroImage 8, 113–128 (1998)

    Article  Google Scholar 

  37. Maslov, S., Sneppen, K.: Specificity and stability in topology of protein networks. Science 296, 910–913 (2002)

    Article  Google Scholar 

  38. Milo, R., Shen-Orr, S., Itzkovitz, S., Kashtan, N., Chklovskii, D., Alon, U.: Network motifs: simple building blocks of complex networks. Science 298, 824–827 (2002)

    Article  Google Scholar 

  39. Rubinov, M., Sporns, O.: Complex network measures of brain connectivity: Uses and interpretations. NeuroImage 52, 1059–1069 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wang, Z., Liu, J., Zhong, N., Qin, Y., Zhou, H., Li, K. (2011). Robust and Stable Small-World Topology of Brain Intrinsic Organization during Pre- and Post-Task Resting States. In: Hu, B., Liu, J., Chen, L., Zhong, N. (eds) Brain Informatics. BI 2011. Lecture Notes in Computer Science(), vol 6889. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23605-1_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-23605-1_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-23604-4

  • Online ISBN: 978-3-642-23605-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics