Skip to main content

Generalized Disjunctive Programming: Solution Strategies

  • Chapter
  • First Online:
Algebraic Modeling Systems

Part of the book series: Applied Optimization ((APOP,volume 104))

  • 1593 Accesses

Abstract

Generalized disjunctive programming (GDP) is an extension of the disjunctive programming paradigm developed by Balas. The GDP formulation involves Boolean and continuous variables that are specified in algebraic constraints, disjunctions and logic propositions, which is an alternative representation to the traditional algebraic mixed-integer programming formulation. GDP has proven to be very useful in representing a wide variety of problems successfully. Even though a wealth of powerful algorithms exist to solve these problems, GDP suffers a lack of mature solver technology. The main goal of this paper is to review the basic concepts and algorithms related to GDP problems and describe how solver technology is being developed. With this in mind after providing a brief review of MINLP optimization, we present an overview of GDP for the case of convex functions emphasizing the quality of continuous relaxations of alternative reformulations that include the big-M and the hull relaxation. We then review disjunctive branch and bound as well as logic-based decomposition methods that circumvent some of the limitations in traditional MINLP optimization. The first implemented GDP solver LogMIP successfully demonstrated that formulating and solving such problems can be done in an algebraic modeling system like GAMS. Recently, LogMIP has been introduced into GAMS’ Extended Mathematical Programming (EMP) framework integrating it much closer into the GAMS system and language and at the same time offering much more flexibility to the user. Since the model is separated from the reformulation chosen and from the solver used to solve the automatically generated model, this setup allows to easily switch methods at no costs and to benefit from advancing solver technology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://www.gams.com/emplib/emplib.htm

  2. 2.

    For comparison, GAMS systems up to 23.6 contain the original LogMIP implementation and are still available for download at http://www.gams.com/download/download\_old.htm

  3. 3.

    ConvexHull, big = 1e4, eps = 1e-4.

  4. 4.

    http://www.gams.com/modlib/libhtml/logmip3.htm

References

  1. Abhishek, K., Leyffer, S., Linderoth, J.T.: FilMINT: An Outer-Approximation-Based Solver for Nonlinear Mixed Integer Programs, ANL/MCS-P1374-0906, Argonne National Laboratory (2006)

    Google Scholar 

  2. Balas, E.: Disjunctive programming. 5, 3–51 (1979)

    Google Scholar 

  3. Balas, E.: Disjunctive programming and a hierarchy of relaxations for discrete optimization problems. SIAM J. Alg. Disc. Meth. 6, 466–486 (1985)

    Article  Google Scholar 

  4. Beaumont N.: An algorithm for disjunctive programs. Eur. J. Oper. Res. 48, 362–371 (1991)

    Article  Google Scholar 

  5. Biegler L., Grossmann I.E., Westerberg W.: Systematic methods of chemical process design. Prentice Hall, Englewood Cliffs, NJ, USA (1997)

    Google Scholar 

  6. Bonami P., Biegler L.T., Conn A.R., Cornuejols G., Grossmann I.E., Laird C.D., Lee, J., Lodi, A., Margot, F., Sawaya, N., Wächter, A.: An algorithmic framework for convex mixed integer nonlinear programs. Discrete Optim. 5, 186–204 (2008)

    Article  Google Scholar 

  7. Borchers, B., Mitchell, J.E.: An improved branch and bound algorithm for mixed integer nonlinear programming. Comput. Oper. Res. 21, 359–367 (1994)

    Article  Google Scholar 

  8. Brooke A., Kendrick, D., Meeraus, A., Raman R.: GAMS, a User’s Guide, GAMS Development Corporation, Washington (1998)

    Google Scholar 

  9. www.ibm.com/software/integration/optimization/cplex.

  10. Duran, M.A., Grossmann, I.E.: An outer-approximation algorithm for a class of mixed-integer nonlinear programs. Math Program. 36, 307 (1986)

    Article  Google Scholar 

  11. Ferris, M.C., Dirkse, S.P., Jagla, J.-H., Meeraus, A.: An extended mathematical programming framework. Comput. Chem. Eng. 33, 1973–1982 (2009)

    Article  Google Scholar 

  12. www.fico.com

  13. Fletcher, R., Leyffer, S.: Solving mixed integer nonlinear programs by outer-approximation. Math Program. 66, 327 (1994)

    Article  Google Scholar 

  14. http://www.gurobi.com

  15. GAMS Development Corporation, EMP user’s manual, IMA. www.gams.com/solvers/emp.pdf

  16. Geoffrion, A.M.: Generalized Benders decomposition, JOTA, 10, 237–260 (1972)

    Article  Google Scholar 

  17. Grossmann, I.E., Caballero, J.A., Yeomans, H. Advances in mathematical programming for automated design, integration and operation of chemical processes. Korean J. Chem. Eng. 16, 407–426 (1999)

    Article  Google Scholar 

  18. Grossmann, I.E.: Review of non-linear mixed integer and disjunctive programming techiques for process systems engineering. Optim. Eng. 3, 227–252 (2002)

    Article  Google Scholar 

  19. Grossmann, I.E., Lee, S.: Generalized convex disjunctive programming: Nonlinear convex hull relaxation. Comput. Optim. Appl. 26, 83–100 (2003)

    Article  Google Scholar 

  20. Gupta, O.K., Ravindran, V.: Branch and bound experiments in convex nonlinear integer programming. Manag. Sci. 31(12), 1533–1546 (1985)

    Article  Google Scholar 

  21. Hooker, J.N., Osorio, M.A.: Mixed logical-linear programming. Discrete Appl. Math. 96–97, 395–442 (1999)

    Article  Google Scholar 

  22. Hooker, J.N.: Logic-based methods for optimization: Combining optimization and constraint satisfaction. Wiley, NY, USA (2000)

    Book  Google Scholar 

  23. Kallrath, J.: Mixed integer optimization in the chemical process industry: Experience, potential and future, Trans. I.Chem E. 78, 809–822 (2000)

    Google Scholar 

  24. Lee, S., Grossmann, I.E.: New algorithms for nonlinear generalized disjunctive programming. Comput. Chem. Eng. 24, 2125–2141 (2000)

    Article  Google Scholar 

  25. Leyffer, S.: Integrating SQP and branch and bound for mixed integer nonlinear programming. Comput. Optim. Appl. 18, 295–309 (2001)

    Article  Google Scholar 

  26. Liberti, L., Mladenovic, M., Nannicini, G.: A good recipe for solving MINLPs. Hybridizing metaheuristics and mathematical programming, Springer, 10 (2009)

    Google Scholar 

  27. LindoGLOBAL Solver, http://www.gams.com/dd/docs/solvers/lindoglobal.pdf

  28. Mendez, C.A., Cerda, J., Grossmann, I.E., Harjunkoski I., Fahl, M.: State-of-the-art review of optimization methods for short-term scheduling of batch processes. Comput. Chem. Eng. 30, 913 (2006)

    Article  Google Scholar 

  29. Nemhauser, G.L., Wolsey, L.A.: Integer and Combinatorial Optimization, Wiley, New York (1988)

    Google Scholar 

  30. Quesada, I., Grossmann, I.E.: An LP/NLP based branch and bound algorithm for convex MINLP optimization problems. Comput. Chem. Eng. 16, 937–947 (1992)

    Article  Google Scholar 

  31. Raman, R., Grossmann, I.E.: Modeling and computational techniques for logic-based integer programming. Comput. Chem. Eng. 18, 563 (1994)

    Article  Google Scholar 

  32. Grossmann, I.E., Ruiz, J.P.: Generalized Disjunctive Programming: a framework for formulation and alternative MINLP optimization. In: Lee, J., Leyffer, S. (Eds.), Mixed Integer Nonlinear Programming. Series: The IMA Volumes in Mathematics and Its Applications, vol. 154, pp. 93–115. Springer, New York (2012)

    Chapter  Google Scholar 

  33. Ruiz, J.P., Grossmann, I.E.: A hierarchy of relaxations for convex generalized disjunctive programs. European Journal of Operational Research 218, 38–47 (2012)

    Article  Google Scholar 

  34. Sahinidis, N.V.: BARON: A general purpose global optimization software package. J. Global Optim. 8(2), 201–205 (1996)

    Article  Google Scholar 

  35. Sawaya, N.: Thesis: Reformulations, relaxations and cutting planes for generalized disjunctive programming. Carnegie Mellon University, Pittsburgh, PA (2006)

    Google Scholar 

  36. http://scip.zib.de/

  37. Stubbs, R., Mehrotra, S.: A Branch-and-cut method for 0-1 mixed convex programming. Math Program. 86(3), 515–532 (1999)

    Article  Google Scholar 

  38. Turkay, M., Grossmann, I.E.: A Logic-based outer-approximation algorithm for MINLP optimization of process flowsheets. Comput. Chem. Eng. 20, 959–978 (1996)

    Article  Google Scholar 

  39. Vecchietti, A., Grossmann, I.E.: Logmip: A disjunctive 01 non-linear optimizer for process system models. Comput. Chem. Eng. 23(4), 555–565 (1999)

    Article  Google Scholar 

  40. Vecchietti, A., Lee, S., Grossmann, I.E.: Modeling of discrete/continuous optimization problems: Characterization and formulation of disjunctions and their relaxations. Comput. Chem. Eng. 27, 433–448 (2003)

    Article  Google Scholar 

  41. Vecchietti, A., Grossmann, I.E.: LOGMIP: A discrete continuous nonlinear optimizer. Comput. Chem. Eng. 23, 555–565 (2003)

    Google Scholar 

  42. Viswanathan and Grossmann I.E.: A combined penalty function and outer-approximation method for MINLP optimization. Comput. Chem. Eng. 14, 769–782 (1990)

    Google Scholar 

  43. Westerlund, T., Pettersson, F.: A Cutting plane method for solving convex MINLP problems. Comput. Chem. Eng. 19, S131–S136 (1995)

    Article  Google Scholar 

  44. Westerlund, T., Pörn, R.: Solving pseudo-convex mixed integer optimization problems by cutting plane techniques. Optim. Eng. 3, 253–280 (2002)

    Article  Google Scholar 

  45. Williams, H.P.: Mathematical building in mathematical programming. Wiley, New York (1985)

    Google Scholar 

  46. Yuan, X., Zhang, S., Piboleau, L., Domenech, S.: Une methode d’optimisation nonlineare en variables mixtes pour la conception de procedes. RAIRO, 22, 331 (1988)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ruiz, J.P., Jagla, JH., Grossmann, I.E., Meeraus, A., Vecchietti, A. (2012). Generalized Disjunctive Programming: Solution Strategies. In: Kallrath, J. (eds) Algebraic Modeling Systems. Applied Optimization, vol 104. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23592-4_4

Download citation

Publish with us

Policies and ethics