Skip to main content

Chemical Reaction Systems, Computer Algebra and Systems Biology

(Invited Talk)

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6885))

Abstract

In this invited paper, we survey some of the results obtained in the computer algebra team of Lille, in the domain of systems biology. So far, we have mostly focused on models (systems of equations) arising from generalized chemical reaction systems. Eight years ago, our team was involved in a joint project, with physicists and biologists, on the modeling problem of the circadian clock of the green algae Ostreococcus tauri. This cooperation led us to different algorithms dedicated to the reduction problem of the deterministic models of chemical reaction systems. More recently, we have been working more tightly with another team of our lab, the BioComputing group, interested by the stochastic dynamics of chemical reaction systems. This cooperation led us to efficient algorithms for building the ODE systems which define the statistical moments associated to these dynamics. Most of these algorithms were implemented in the MAPLE computer algebra software. We have chosen to present them through the corresponding MAPLE packages.

This work has benefited from the support of the French ANR (decision number ANR-2010-BLAN-0109-03).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bächler, T., Gerdt, V., Lange-Hegermann, M., Robertz, D.: Thomas Decomposition of Algebraic and Differential Systems. In: Gerdt, V.P., Koepf, W., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2010. LNCS, vol. 6244, pp. 31–54. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  2. Batt, G., Page, M., Cantone, I., Goessler, G., Monteiro, P., de Jong, H.: Efficient parameter search for qualitative models of regulatory networks using symbolic model checking. In: ECCB, vol. 26, pp. i603–i610 (2010)

    Google Scholar 

  3. Boulier, F., Lazard, D., Ollivier, F., Petitot, M.: Computing representations for radicals of finitely generated differential ideals. Applicable Algebra in Engineering, Communication and Computing 20(1), 73–121 (2009); (1997 Tech. rep. IT306 of the LIFL)

    Article  MathSciNet  MATH  Google Scholar 

  4. Boulier, F., Lefranc, M., Lemaire, F., Morant, P.-E.: Model Reduction of Chemical Reaction Systems using Elimination. Presented at the International Conference MACIS 2007 (2007), http://hal.archives-ouvertes.fr/hal-00184558

  5. Boulier, F., Lefranc, M., Lemaire, F., Morant, P.-E.: Applying a Rigorous Quasi-Steady State Approximation Method for Proving the Absence of Oscillations in Models of Genetic Circuits. In: Horimoto, K., Regensburger, G., Rosenkranz, M., Yoshida, H. (eds.) AB 2008. LNCS, vol. 5147, pp. 56–64. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  6. Boulier, F., Lefranc, M., Lemaire, F., Morant, P.-E., Ürgüplü, A.: On Proving the Absence of Oscillations in Models of Genetic Circuits. In: Anai, H., Horimoto, K., Kutsia, T. (eds.) AB 2007. LNCS, vol. 4545, pp. 66–80. Springer, Heidelberg (2007), http://hal.archives-ouvertes.fr/hal-00139667

  7. Brown, C.W.: QEPCAD B: a program for computing with semi-algebraic sets using CADs. SIGSAM Bulletin 37(4), 97–108 (2003), http://www.cs.usna.edu/~qepcad/B/QEPCAD.html

    Article  MATH  Google Scholar 

  8. Chaves, M., Sontag, E.D.: State-Estimators for Chemical Reaction Networks of Feinberg-Horn-Jackson Zero Deficiency Type. European Journal Control 8, 343–359 (2002)

    Article  MATH  Google Scholar 

  9. The Cytoscape Consortium. Cytoscape: An Open Source Platform for Complex Network Analysis and Visualization (2001-2010), http://www.cytoscape.org

  10. Dolzmann, A., Sturm, T.: Redlog: computer algebra meets computer logic. SIGSAM Bulletin 31(2), 2–9 (1997)

    Article  Google Scholar 

  11. El Din, M.S.: RAGLib: A library for real solving polynomial systems of equations and inequalities (2007), http://www-salsa.lip6.fr/~safey/RAGLib

  12. Derelle, É., et al.: Genome Analysis of the smallest free-living eukaryote Ostreococcus tauri unveils many unique features. Proceedings of the National Academy of Science of the USA 103(31) (August 2006)

    Google Scholar 

  13. Fages, F., Soliman, S., Chabrier-Rivier, N.: Modelling and querying interaction networks in the biochemical abstract machine BIOCHAM. Journal of Biological Physics and Chemistry 4, 64–73 (2004)

    Article  MATH  Google Scholar 

  14. Feinberg, M.: The Existence and Uniqueness of Steady States for a Classe of Chemical Reaction Networks. Arch. Rational Mech. Anal. 132, 311–370 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  15. Gatermann, K., Eiswirth, M., Sensse, A.: Toric ideals and graph theory to analyze Hopf bifurcations in mass action systems. Journal of Symbolic Computation 40(6), 1361–1382 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  16. Gillespie, C.S.: Moment-closure approximations for mass-action models. Systems Biology, IET 3(1) (2009)

    Google Scholar 

  17. Gillespie, D.T.: Exact Stochastic Simulation of Coupled Chemical Reactions. Journal of Physical Chemistry 81(25), 2340–2361 (1977)

    Article  Google Scholar 

  18. Henri, V.: Lois générales de l’Action des Diastases. Hermann, Paris (1903)

    Google Scholar 

  19. Kœrn, M., Elston, T.C., Blake, W.J., Collins, J.J.: Stochasticity in gene expression: from theories to phenotypes. Nature 6, 451–464 (2005)

    Google Scholar 

  20. Kokotovic, P., Khalil, H.K., O’Reilly, J.: Singular Perturbation Methods in Control: Analysis and Design. Classics in Applied Mathematics, vol. 25. SIAM, Philadelphia (1999)

    Google Scholar 

  21. Lemaire, F., Maza, M.M., Xie, Y.: The RegularChains library in MAPLE 10. In: Kotsireas, I.S. (ed.) The MAPLE Conference, pp. 355–368 (2005)

    Google Scholar 

  22. Lemaire, F., Ürgüplü, A.: A method for semi-rectifying algebraic and differential systems using scaling type Lie point symmetries with linear algebra. In: Proceedings of ISSAC 2010, München, Germany, pp. 85–92 (August 2010)

    Google Scholar 

  23. Lemaire, F., Ürgüplü, A.: Mabsys: Modeling and analysis of biological systems. In: Horimoto, K., Nakatsui, M., Popov, N. (eds.) Proceedings of Algebraic and Numeric Biology 2010, Castle of Hagenberg, Austria (August 2010)

    Google Scholar 

  24. Lemaire, F., Ürgüplü, A.: The MABSys MAPLE package (2010), http://www.lifl.fr/~lemaire/MABSys

  25. Michaelis, L., Menten, M.: Die kinetik der invertinwirkung. Biochemische Zeitschrift 49, 333–369 (1973), Partial translation in english on http://web.lemoyne.edu/~giunta/menten.html

  26. Moroz, G., Rouillier, F.: DV: Un logiciel de classification des solutions réelles d’un système paramétré (2009), http://www-spiral.lip6.fr/~moroz/fr/software.html

  27. Murray, J.D.: Mathematical Biology I. An Introduction, 3rd edn. Interdisciplinary Applied Mathematics, vol. 17. Springer, Heidelberg (2002)

    MATH  Google Scholar 

  28. Niu, W.: Qualitative Analysis of Biological Systems Using Algebraic Methods. PhD thesis, Université Paris VI, Paris (June 2011)

    Google Scholar 

  29. Nöthen, A.L.: Quasistationarität und Fast-Invariante Mengen Gewönlicher Differentialgleichungen. PhD thesis, Rheinisch-Westfälischen Technischen Hochschule (2008)

    Google Scholar 

  30. Othmer, H.G.: Analysis of Complex Reaction Networks in Signal Transduction, Gene Control and Metabolism (2006), http://www.ricam.oeaw.ac.at/publications/download/summerschool/LectureNotes_Othmer.pdf

  31. Paulsson, J.: Models of stochastic gene expression. Physics of Life Reviews 2, 157–175 (2005)

    Article  Google Scholar 

  32. Paulsson, J., Elf, J.: Stochastic Modeling of Intracellular Kinetics. In: Szallasi, Z., Stelling, J., Periwal, V. (eds.) System Modeling in Cellular Biology: From Concepts to Nuts and Bolts, pp. 149–175. The MIT Press, Cambridge (2006)

    Chapter  Google Scholar 

  33. Érdi, P., Tóth, J.: Mathematical models of chemical reactions: theory and applications of deterministic and stochastic models. Princeton University Press, Princeton (1989)

    MATH  Google Scholar 

  34. Petitot, M.: The MAGNUS MAPLE software (2010), http://www.lifl.fr/~petitot/recherche/exposes/ANB2010

  35. Sedoglavic, A.: Reduction of Algebraic Parametric Systems by Rectification of Their Affine Expanded Lie Symmetries. In: Anai, H., Horimoto, K., Kutsia, T. (eds.) AB 2007. LNCS, vol. 4545, pp. 277–291. Springer, Heidelberg (2007)

    Google Scholar 

  36. Sedoglavic, A., Ürgüplü, A.: Expanded Lie Point Symmetry, MAPLE package (2007), http://www.lifl.fr/~sedoglav/Software

  37. Singh, A., Hespanha, J.P.: Lognormal Moment Closures for Biochemical Reactions. In: Proceedings of the 45th IEEE Conference on Decision and Control, pp. 2063–2068 (2006)

    Google Scholar 

  38. Ürgüplü, A.: Contribution to Symbolic Effective Qualitative Analysis of Dynamical Systems; Application to Biochemical Reaction Networks. PhD thesis, University Lille I, Lille, France (2010)

    Google Scholar 

  39. Van Breusegem, V., Bastin, G.: Reduced order dynamical modelling of reaction systems: a singular perturbation approach. In: Proceedings of the 30th IEEE Conference on Decision and Control, Brighton, England, pp. 1049–1054 (December 1991)

    Google Scholar 

  40. Vidal, S., Petitot, M., Boulier, F., Lemaire, F., Kuttler, C.: Models of Stochastic Gene Expression and Weyl Algebra. In: Horimoto, K., Nakatsui, M., Popov, N. (eds.) Proceedings of Algebraic and Numeric Biology 2010, Castle of Hagenberg, Austria, pp. 50–67 (August 2010)

    Google Scholar 

  41. Vilar, J.M.G., Kueh, H.Y., Barkai, N., Leibler, S.: Mechanisms of noise-resistance in genetic oscillators. Proceedings of the National Academy of Science of the USA 99(9), 5988–5992 (2002)

    Google Scholar 

  42. Xia, B.: DISCOVERER: A tool for solving semi-algebraic systems. ACM Commun. Comput. Algebra 41, 102–103 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Boulier, F., Lemaire, F., Petitot, M., Sedoglavic, A. (2011). Chemical Reaction Systems, Computer Algebra and Systems Biology. In: Gerdt, V.P., Koepf, W., Mayr, E.W., Vorozhtsov, E.V. (eds) Computer Algebra in Scientific Computing. CASC 2011. Lecture Notes in Computer Science, vol 6885. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23568-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-23568-9_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-23567-2

  • Online ISBN: 978-3-642-23568-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics