Skip to main content

A Modular Approach for Beam Lines Design

  • Conference paper
Computer Algebra in Scientific Computing (CASC 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6885))

Included in the following conference series:

  • 575 Accesses

Abstract

We discuss advantages of numerical simulation based on symbolic presentations of beam line dynamical models. In some previous papers, some of these features were discussed. In this paper, we demonstrate how the symbolic presentation of necessary information can provide an in-depth study of different features of complex systems. For this purpose, we suggest a modular principle for all levels of the modeling and optimization procedures. This principle is based on so-called LEGO objects, which have both symbolic and numerical representation. For beam line design, it is necessary to support three types of similar objects. The first of them contains all necessary objects for beam line components description, the second contains all objects which correspond to particle beam models, and the third contains all objects corresponding to a transfer map (“a beam propagator”). In the suggested approach, the beam propagator is presented as a set of two-dimensional matrices describing different kinds of beam or beam line properties up to some approximation order. These matrices can be computed both in symbolic and numerical forms up to the necessary approximation order of the nonlinear effects. An example of practical application is demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cai, Y., Donald, M., Irwin, J., Yan, J.: LEGO: A Modular Accelerator Design Code. SLAC-PUB-7642 (August 1997)

    Google Scholar 

  2. Dragt, A.J.: Lie Methods for Nonlinear Dynamics with Applications to Accelerator Physics, p. 1805. University of Maryland, College Park (2011), www.physics.umd.edu/dsat/

    Google Scholar 

  3. Dragt, A.J.: Lectures on nonlinear orbit dynamics. In: AIP Conf. Proc., vol. (87), pp. 147–313 (1987)

    Google Scholar 

  4. Dragt, A.J.: Lie Algebraic Treatment of Linear and Nonlinear Beam Dynamics. In: Annual Review of Nuclear and Particle Science, vol. 38, pp. 455–496 (1988)

    Google Scholar 

  5. Andrianov, S.N.: The explicit form for Lie transformations. In: Proc. Fifth European Particle Accelerator Conference EPAC 1996, SITGES (Barcelona, Spain), pp. 998–1000. Barselona (1996)

    Google Scholar 

  6. Andrianov, S.N.: Matrix representation of the Lie algebraic methods for design of nonlinear beam lines. In: AIP Conf. Proc., N.Y, vol. (391), pp. 355–360 (1997)

    Google Scholar 

  7. Andrianov, S.N.: Symbolic computation of approximate symmetries for ordinary differential equations. Mathematics and Computers in Simulation 57(3-5), 147–154 (2001)

    Google Scholar 

  8. Andrianov, S.N.: Lego-Technology Approach for Beam Line Design. In: Proc. EPAC 2002, Paris, France, pp. 1667–1669 (2002)

    Google Scholar 

  9. Andrianov, S.N.: Dynamical Modeling of Control Systems for Particle Beams. SPbSU, Saint Petersburg (2004) (in Russian)

    Google Scholar 

  10. Andrianov, S.N.: A role of symbolic computations in beam physics. In: Gerdt, V.P., Koepf, W., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2010. LNCS, vol. 6244, pp. 19–30. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  11. Dragt, A.J., Finn, J.M.: Lie series and invariant functions for analytic symplectic maps. J. Math. Phys. 17(12), 2215–2227 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  12. Sanz-Serna, J.M.: Symplectic integrators for Hamiltonian problems: an overview. Acta Numerica 1, 243–286 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  13. Ruth, R.D.: A canonical integration technique. IEEE Trans. Nucl. Sci. 30, 2669 (1983)

    Article  Google Scholar 

  14. Yoshida, H.: Construction of higher order symplectic integrators. Phys. Lett. A 150, 262 (1990)

    Google Scholar 

  15. Forest, E.: Canonical integrators as tracking codes. In: AIP Conf. Proc., vol. 184, pp. 1106–1136. American Institute of Physics, New York (1989)

    Chapter  Google Scholar 

  16. Andrianov, S., Edamenko, N., Podzivalov, E.: Some problems of global optimization for beam lines. In: Proc. PHYSCON 2009, Catania, Italy, September 1-4 (2009), http://lib.physcon.ru/download/p1998.pdf

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Andrianov, S.N. (2011). A Modular Approach for Beam Lines Design. In: Gerdt, V.P., Koepf, W., Mayr, E.W., Vorozhtsov, E.V. (eds) Computer Algebra in Scientific Computing. CASC 2011. Lecture Notes in Computer Science, vol 6885. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23568-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-23568-9_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-23567-2

  • Online ISBN: 978-3-642-23568-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics