Skip to main content

Computation of Inter-Nodal Permeabilities for Richards Equation

  • Chapter
  • First Online:
Modelling Water Flow in Unsaturated Porous Media

Part of the book series: GeoPlanet: Earth and Planetary Sciences ((GEPS))

  • 2278 Accesses

Abstract

An important part of all finite difference and many finite volume discretization schemes developed for multiphase flow equations is the approximation of the average permeability value between two neighbouring nodes. Various averaging techniques are presented in this chapter, with particular focus on the case of one-dimensional unsaturated flow in a homogeneous medium, for which accurate inter-nodal permeability estimations based on steady flow analysis are available. It is shown that the relation between capillary and gravity forces at the scale of a single grid cell has key importance for the choice of the averaging scheme. An averaging method developed by the author for one-dimensional flow is presented in detail, and its extensions to heterogeneous materials and multidimensional problems are discussed. Implications for two-phase flow modelling are also considered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aziz K, Settari A (1979) Petroleum reservoir simulation. Applied Science, Essex

    Google Scholar 

  2. Baker D (1995) Darcian weighted interblock conductivity means for vertical unsaturated flow. Ground Water 33(3):385–390. doi:10.1111/j.1745-6584.1995.tb00294.x

    Article  Google Scholar 

  3. Baker D (2000) A Darcian integral approximation to interblock hydraulic conductivity means in vertical infiltration. Comput Geosci 26(5):581–590

    Article  Google Scholar 

  4. Baker D (2006) General validity of conductivity means in unsaturated flow. J Hydrol Eng 11(6):526–538

    Article  Google Scholar 

  5. Baker D, Arnold M, Scott H (1999) Some analytic and approximate Darcian means. Ground Water 37(4):532–538. doi:10.1111/j.1745-6584.1999.tb01139.x

    Article  Google Scholar 

  6. Belfort B, Lehmann F (2005) Comparison of equivalent conductivities for numerical simulation of one-dimensional unsaturated flow. Vadose Zone J 4(4):1191–1200

    Article  Google Scholar 

  7. Berg P (1999) Long-term simulation of water movement in soils using mass-conserving procedures. Adv Water Resour 22(5):419–430

    Article  Google Scholar 

  8. Brunone B, Ferrante M, Romano N, Santini A (2003) Numerical simulations of one-dimensional infiltration into layered soils with the Richards’ equation using different enstimates of the interlayer conductivity. Vadose Zone J 2(2):193–200

    Google Scholar 

  9. Burzyński K, Szymkiewicz A (2011) Unstructured finite-volume meshes for two-dimensional flow in variably saturated porous media. TASK Q 15(3):1001–10,014

    Google Scholar 

  10. Celia M, Binning P (1992) A mass conservative numerical solution for two-phase flow in porous media with application to unsaturated flow. Water Resour Res 28(10):2819–2828

    Article  Google Scholar 

  11. Celia M, Bouloutas E, Zarba R (1990) A general mass-conservative numerical solution for the unsaturated flow equation. Water Resour Res 26(7):1483–1496

    Article  Google Scholar 

  12. Desbarats A (1995) An interblock conductivity scheme for finite difference models of steady unsaturated flow in heterogeneous media. Water Resour Res 31(11):2883–2889

    Article  Google Scholar 

  13. Fagerlund F, Niemi A, Odén M (2006) Comparison of relative permeabilityfluid saturationcapillary pressure relations in the modelling of non-aqueous phase liquid infiltration in variably saturated, layered media. Adv Water Resour 29(11):1705–1730. doi:10.1016/j.advwatres.2005.12.007

    Google Scholar 

  14. Fletcher C (1991) Computational techniques for fluid dynamics 1. Fundamental and general techniques. Springer, Berlin

    Book  Google Scholar 

  15. Forsyth P, Kropinski M (1997) Monotonicity considerations for saturated–unsaturated subsurface flow. SIAM J Sci Comput 18(5):1328–1354

    Article  Google Scholar 

  16. Forsyth P, Wu Y, Pruess K (1995) Robust numerical methods for saturated–unsaturated flow in heterogeneous media. Adv Water Resour 18(1):25–38

    Article  Google Scholar 

  17. Fuhrmann J, Langmach H (2001) Stability and existence of solutions of time-implicit finite volume schemes for viscous nonlinear conservation laws. Appl Numer Math 37(1–2):201–230

    Google Scholar 

  18. Fučik R, Mikyška J, Beneš M, Illangasekare T (2007) An improved semi-analytical solution for verification of numerical models of two-phase flow in porous media. Vadose Zone J 6(1):93–104

    Article  Google Scholar 

  19. Gastó J, Grifoll J, Cohen Y (2002) Estimation of internodal permeabilities for numerical simulations of unsaturated flows. Water Resour Res 38(12):1326

    Article  Google Scholar 

  20. Guarnaccia J, Pinder G, Fishman M (1997) NAPL: simulator documentation. Environmental Protection Agency, USA

    Google Scholar 

  21. Haverkamp R, Vauclin M (1979) A note on estimating finite difference interblock hydraulic conductivity values for transient unsaturated flow. Water Resour Res 15(1):181–187

    Article  Google Scholar 

  22. Helmig R, Huber R (1998) Comparison of Galerkin-type discretization techniques for two-phase flow in heterogenous porous media. Adv Water Resour 21(8):697–711

    Article  Google Scholar 

  23. Kavetski D, Binning P, Sloan S (2001) Adaptive time stepping and error control in a mass conservative numerical solution of the mixed form of Richards equation. Adv Water Resour 24(6):595–605

    Article  Google Scholar 

  24. Kees C, Miller C (2002) Higher order time integration methods for two-phase flow. Adv Water Resour 25(2):159–177

    Article  Google Scholar 

  25. Kirkland M, Hills R, Wierenga P (1992) Algorithms for solving Richards equation for variably saturated soil. Water Resour Res 28(8):2049–2058

    Article  Google Scholar 

  26. Kueper B, Frind E (1991) Two-phase flow in heterogeneous porous media 1. Model development. Water Resour Res 27(6):1049–1057

    Article  Google Scholar 

  27. Lassabatere L, Angulo-Jaramillo R, Cuenca R, Braud I, Haverkamp R (2006) Beerkan estimation of soil transfer parameters through infiltration experiments—BEST. Soil Sci Soc Am J 70(2):521–532

    Article  Google Scholar 

  28. Lima-Vivancos V, Voller V (2004) Two numerical methods for modeling variably saturated flow in layered media. Vadose Zone J 3(3):1031–1037

    Google Scholar 

  29. Manzini G, Ferraris S (2004) Mass-conservative finite volume methods on 2-d unstructured grids for the Richards’ equation. Adv Water Resour 27(12):1199–1215

    Article  Google Scholar 

  30. Miller C, Williams G, Kelley C, Tocci M (1998) Robust solution of Richards equation for nonuniform porous media. Water Resour Res 34(10):2599–2610

    Article  Google Scholar 

  31. Pei Y, Wang J, Tian Z, Yu J (2006) Analysis of interfacial error in saturated–unsaturated flow models. Adv Water Resour 29(4):515–524

    Article  Google Scholar 

  32. Romano N, Brunone B, Santini A (1998) Numerical analysis of one-dimensional unsaturated flow in layered soils. Adv Water Resour 21(4):315–324

    Article  Google Scholar 

  33. Ross P (2003) Modeling soil water and solute transport—fast simplified numerical solutions. Agron J 95(6):1352–1361

    Article  Google Scholar 

  34. Schnabel R, Richie E (1984) Calculation of internodal conductances for unsaturated flow simulations. Soil Sci Soc Am J 48(5):1006–1010

    Article  Google Scholar 

  35. Šimnek J, Šejna M, Saito H, Sakai M, van Genuchten M (2008) The HYDRUS-1D software package for simulating the one-dimensional movement of water, heat and multiple solutes in variably-saturated media. Version 4.0. Department of Environmental Sciences, University of California Riverside, Riverside

    Google Scholar 

  36. Srivastava R, Guzman-Guzman A (1995) Analysis of hydraulic conductivity averaging schemes for one-dimensional, steady-state unsaturated flow. Ground Water 33(6):946–952. doi:10.1111/j.1745-6584

    Article  Google Scholar 

  37. Sunada D, McWhorter D (1990) Exact integral solutions for two phase flow. Water Resour Res 26(3):399–413

    Article  Google Scholar 

  38. Szymkiewicz A (2007) Numerical simulation of one-dimensional two-phase flow in porous media. Arch Hydro-eng Environ Mech 54(2):117–136

    Google Scholar 

  39. Szymkiewicz A (2009) Approximation of internodal conductivities in numerical simulation of 1D infiltration, drainage and capillary rise in unsaturated soils. Water Resour Res 45:W10403

    Article  Google Scholar 

  40. Szymkiewicz A, Helmig R (2011) Comparison of conductivity averaging methods for one-dimensional unsaturated flow in layered soils. Adv Water Resour 34(8):1012–1025

    Article  Google Scholar 

  41. Touma J, Vauclin M (1986) Experimental and numerical analysis of two-phase infiltration in a partially saturated soil. Transp Porous Media 1(1):27–55

    Article  Google Scholar 

  42. Tracy F (2006) Clean two and three-dimensional analytical solutions of Richards’ equation for testing numerical solvers. Water Resour Res 42:W08503

    Article  Google Scholar 

  43. van Dam J, Feddes R (2000) Numerical simulation of infiltration, evaporation and shallow groundwater levels with the Richards equation. J Hydrol 233(1):72–85

    Article  Google Scholar 

  44. Warrick A (1991) Numerical approximation of Darcian flow through unsaturated soil. Water Resour Res 27(6):1215–1222

    Article  Google Scholar 

  45. Warrick A, Yeh TC (1990) One-dimensional, steady vertical flow in a layered soil profile. Adv Water Resour 13(4):207–210

    Article  Google Scholar 

  46. Zaidel J, Russo D (1992) Estimation of finite difference interblock conductivities for simulation of infiltration into initially dry soils. Water Resour Res 28(9):2285–2295

    Article  Google Scholar 

  47. Zhang X, Ewen J (2000) Efficient method for simulating gravity-dominated water flow in unsaturated soils. Water Resour Res 36(9):2777–2780

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adam Szymkiewicz .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Szymkiewicz, A. (2013). Computation of Inter-Nodal Permeabilities for Richards Equation. In: Modelling Water Flow in Unsaturated Porous Media. GeoPlanet: Earth and Planetary Sciences. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23559-7_4

Download citation

Publish with us

Policies and ethics