Gravity Sensing, Interpretation, and Response

  • Miyo Terao MoirtaEmail author
  • Moritaka Nakamura
  • Masao Tasaka
Part of the Signaling and Communication in Plants book series (SIGCOMM, volume 14)


Because higher plants spend their sessile lives at the site of their germination, they rely on a number of strategies to ensure their survival in response to environmental stimuli. One of the stimuli to which plants can respond is gravity. Here, we describe recent findings with regard to the plant’s response to gravity. We put specific emphasis on the molecular mechanism of gravitropism, which is a well-studied response to gravity. Since the direction and the magnitude of gravity are relatively constant on the surface of the Earth, gravitropism can be regarded as a posture adjustment, triggered by sensing the tilt of organs relative to the direction of gravity. Recent studies that combined molecular genetics and cell biological approaches in Arabidopsis thaliana have contributed to understand the mechanism of gravitropism.


Endodermal Cell Gravitropic Response Root Gravitropism Columella Cell Phototropic Response 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Benjamins R, Quint A, Weijers D, Hooykaas P, Offringa R (2001) The PINOID protein kinase regulates organ development in Arabidopsis by enhancing polar auxin transport. Development 128:4057–4067PubMedGoogle Scholar
  2. Blancaflor EB, Fasano JM, Gilroy S (1998) Mapping the functional roles of cap cells in the response of Arabidopsis primary roots to gravity. Plant Physiol 116:213–222PubMedCrossRefGoogle Scholar
  3. Boonsirichai K, Guan C, Chen R, Masson PH (2002) Root gravitropism: an experimental tool to investigate basic cellular and molecular processes underlying mechanosensing and signal transmission in plants. Annu. Rev. Plant. Biol. 53: 421–447Google Scholar
  4. Boonsirichai K, Sedbrook JC, Chen R, Gilroy S, Masson PH (2003) Altered response to gravity is a peripheral membrane protein that modulates gravity-induced cytoplasmic alkalinization and lateral auxin transport in plant statocytes. Plant Cell 15:2612–2625PubMedCrossRefGoogle Scholar
  5. Caspar T, Pickard BG (1989) Gravitropism in a starchless mutant of Arabidopsis: implications for the starch-statolith theory of gravity sensing. Planta 177:185–197PubMedCrossRefGoogle Scholar
  6. Chen N, Siegel SM, Siegel BZ (1980) Gravity and land plant evolution: experimental induction of lignification by simulated hypergravity and water stress. Life Sci Space Res 18:193–198PubMedGoogle Scholar
  7. Chen R, Hilson P, Sedbrook J, Rosen E, Caspar T, Masson PH (1998) The Arabidopsis thaliana AGRAVITROPIC 1 gene encodes a component of the polar-auxin-transport efflux carrier. Proc Natl Acad Sci USA 95:15112–15117PubMedCrossRefGoogle Scholar
  8. Christensen S, Dagenais N, Chory J, Weigel D (2000) Regulation of auxin response by the protein kinase PINOID. Cell 100:469–478PubMedCrossRefGoogle Scholar
  9. Clifford PE, Barclay GF (1980) The sedimentation of amyloplasts in living statocytes of the dandelion flower stalk. Plant Cell Environ 3:381–386CrossRefGoogle Scholar
  10. Clifford PE, Douglas S, McCartney GW (1989) Amyloplast sedimentation in shoot statocytes having a large, central vacuole: Further interpretation from electron microscopy. J Exp Bot 40:1341–1346CrossRefGoogle Scholar
  11. Correl MJ, Kiss JZ (2008) Space-based research on plant tropism. In: Gilroy S, Masson PH (eds) Plant tropisms. Blackwell Publishing, Oxford, pp 161–182Google Scholar
  12. Darwin C (1880) The power of movement in plants. John Murray, LondonGoogle Scholar
  13. Dhonukshe P, Aniento F, Hwang I, Robinson DG, Mravec J, Stierhof YD, Friml J (2007) Clathrin-mediated constitutive endocytosis of PIN auxin efflux carriers in Arabidopsis. Curr Biol 17:520–527PubMedCrossRefGoogle Scholar
  14. Dhonukshe P, Tanaka H, Goh T, Ebine K, Mähönen A, Prasad K, Blilou I, Geldner N, Xu J, Uemura T, Chory J, Ueda T, Nakano A, Scheres B, Friml J (2008) Generation of cell polarity in plants links endocytosis, auxin distribution and cell fate decisions. Nature 456:962–966PubMedCrossRefGoogle Scholar
  15. Ding Z, Galván-Ampudia CS, Demarsy E, Łangowski Ł, Kleine-Vehn J, Fan Y, Morita MT, Tasaka M, Fankhauser C, Offringa R, Friml J (2011) Light-mediated polarization of the PIN3 auxin transporter for the phototropic response in Arabidopsis. Nat Cell Biol 13:447–452PubMedCrossRefGoogle Scholar
  16. Fasano JM, Swanson SJ, Blancaflor EB, Dowd PE, Kao TH, Gilroy S (2001) Changes in root cap pH are required for the gravity response of the Arabidopsis root. Plant Cell 13:907–921PubMedGoogle Scholar
  17. Friml J, Benková E, Blilou I, Wisniewska J, Hamann T, Ljung K, Woody S, Sandberg G, Scheres B, Jürgens G, Palme K (2002a) AtPIN4 mediates sink-driven auxin gradients and root patterning in Arabidopsis. Cell 108:661–673PubMedCrossRefGoogle Scholar
  18. Friml J, Wiśniewska J, Benková E, Mendgen K, Palme K (2002b) Lateral relocation of auxin efflux regulator PIN3 mediates tropism in Arabidopsis. Nature 415:806–809PubMedCrossRefGoogle Scholar
  19. Friml J, Yang X, Michniewicz M, Weijers D, Quint A, Tietz O, Benjamins R, Ouwerkerk P, Ljung K, Sandberg G, Hooykaas PJ, Palme K, Offringa R (2004) A PINOID-dependent binary switch in apical–basal PIN polar targeting directs auxin efflux. Science 306:862–865PubMedCrossRefGoogle Scholar
  20. Fukaki H, Fujisawa H, Tasaka M (1996) SGR1, SGR2, SGR3: Novel genetic loci involved in shoot gravitropism in Arabidopsis thaliana. Plant Physiol 110:945–955PubMedCrossRefGoogle Scholar
  21. Fukaki H, Fujisawa H, Tasaka M (1997) The RHG gene is involved in root and hypocotyl gravitropism in Arabidopsis thaliana. Plant Cell Physiol 38:804–810PubMedCrossRefGoogle Scholar
  22. Fukaki H, Wysocka-Diller J, Kato T, Fujisawa H, Benfey PN, Tasaka M (1998) Genetic evidence that the endodermis is essential for shoot gravitropism in Arabidopsis thaliana. Plant J 14:425–430PubMedCrossRefGoogle Scholar
  23. Furutani M, Sakamoto N, Yoshida S, Kajiwara T, Robert HS, Friml J, Tasaka M (2011) Polar-localized NPH3-like proteins regulate polarity and endocytosis of pin-formed auxin efflux carriers. Development 138:2069–2078PubMedCrossRefGoogle Scholar
  24. Gälweiler L, Guan C, Müller A, Wisman E, Mendgen K, Yephremov A, Palme K (1998) Regulation of polar auxin transport by AtPIN1 in Arabidopsis vascular tissue. Science 282:2226–2230PubMedCrossRefGoogle Scholar
  25. Geldner N, Anders N, Wolters H, Keicher J, Kornberger W, Muller P, Delbarre A, Ueda T, Nakano A, Jurgens G (2003) The Arabidopsis GNOM ARF-GEF mediates endosomal recycling, auxin transport, and auxin dependent plant growth. Cell 112:219–230PubMedCrossRefGoogle Scholar
  26. Grunewald W, Friml J (2010) The march of the PINs: developmental plasticity by dynamic polar targeting in plant cells. EMBO J 29:2700–2014PubMedCrossRefGoogle Scholar
  27. Harrison BR, Masson PH (2008) ARL2, ARG1 and PIN3 define a gravity signal transduction pathway in root statocytes. Plant J 53:380–392PubMedCrossRefGoogle Scholar
  28. Hashiguchi Y, Niihama M, Takahashi T, Saito C, Nakano A, Tasaka M, Morita MT (2010) Loss-of-function mutations of retromer large subunits suppress the phenotype of zig mutant that lacks Qb-SNARE VTI11. Plant Cell 22:159–172PubMedCrossRefGoogle Scholar
  29. Helariutta Y, Fukaki H, Wysocka-Diller J, Nakajima K, Jung J, Sena G, Hauser MT, Benfey PN (2000) The SHORT-ROOT gene controls radial patterning of the Arabidopsis root through radial signaling. Cell 101:555–567PubMedCrossRefGoogle Scholar
  30. Hoson T, Nishitani K, Miyamoto K, Ueda J, Kamisaka S, Yamamoto R, Masuda Y (1996) Effects of hypergravity on growth and cell wall properties of cress hypocotyls. J Exp Bot 47:513–517PubMedCrossRefGoogle Scholar
  31. Hou G, Kramer VL, Wang YS, Chen R, Perbal G, Gilroy S, Blancaflor EB (2004) The promotion of gravitropism in Arabidopsis roots upon actin disruption is coupled with the extended alkalinization of the columella cytoplasm and a persistent lateral auxin gradient. Plant J 39:113–125PubMedCrossRefGoogle Scholar
  32. Jaillais Y, Fobis-Loisy I, Miége C, Rollin C, Gaude T (2006) AtSNX1 defines an endosome for auxin-carrier trafficking in Arabidopsis. Nature 443:106–109PubMedCrossRefGoogle Scholar
  33. Jaillais Y, Santambrogio M, Rozier F, Fobis-Loisy I, Miége C, Gaude T (2007) The retromer protein VPS29 links cell polarity and organ initiation in plants. Cell 130:1057–1070PubMedCrossRefGoogle Scholar
  34. Johannes E, Collings DA, Rink JC, Allen NS (2001) Cytoplasmic pH dynamics in maize pulvinal cells induced by gravity vector changes. Plant Physiol 127:119–130PubMedCrossRefGoogle Scholar
  35. Kamada M, Fujii N, Aizawa S, Kamigaichi S, Mukai C, Shimazu T, Takahashi H (2000) Control of gravimorphogenesis by auxin: accumulation pattern of CS-IAA1 mRNA in cucumber seedlings grown in space and on the ground. Planta 211:493–501PubMedCrossRefGoogle Scholar
  36. Kato T, Morita MT, Fukaki H, Yamauchi Y, Uehara M, Niihama M, Tasaka M (2002) SGR2, a phospholipase-like protein, and ZIG/SGR4, a SNARE, are involved in the shoot gravitropism of Arabidopsis. Plant Cell 14:33–46PubMedCrossRefGoogle Scholar
  37. Kiss JZ, Hertel R, Sack FD (1989) Amyloplasts are necessary for full gravitropic sensitivity in roots of Arabidopsis thaliana. Planta 177:198–206PubMedCrossRefGoogle Scholar
  38. Kiss JZ, Wright JB, Caspar T (1996) Gravitropism in roots of intermediate-starch mutants of Arabidopsis. Physiol Plant 97:237–244PubMedCrossRefGoogle Scholar
  39. Kiss JZ, Guisinger MM, Miller AJ, Stackhouse KS (1997) Reduced gravitropism in hypocotyls of starch-deficient mutants of Arabidopsis. Plant Cell Physiol 38:518–525PubMedCrossRefGoogle Scholar
  40. Kitazawa D, Hatakeda Y, Kamada M, Fujii N, Miyazawa Y, Hoshino A, Iida S, Fukaki H, Morita MT, Tasaka M, Suge H, Takahashi H (2005) Shoot circumnutation and winding movements require gravisensing cells. Proc Natl Acad Sci USA 102:18742–18747PubMedCrossRefGoogle Scholar
  41. Kitazawa D, Miyazawa Y, Fujii N, Nitasaka E, Takahashi H (2008) Characterization of a novel gravitropic mutant of morning glory, weeping2. Adv Space Res 42:1050–1059CrossRefGoogle Scholar
  42. Kleine-Vehn J, Leitner J, Zwiewka M, Sauer M, Abas L, Luschnig C, Friml J (2008) Differential degradation of PIN2 auxin efflux carrier by retromer-dependent vacuolar targeting. Proc Natl Acad Sci USA 105:17812–17817PubMedCrossRefGoogle Scholar
  43. Kleine-Vehn J, Ding Z, Jones AR, Tasaka M, Morita MT, Friml J (2010) Gravity-induced PIN transcytosis for polarization of auxin fluxes in gravity-sensing root cells. Proc Natl Acad Sci USA 107:22344–22349PubMedCrossRefGoogle Scholar
  44. Kondrachuk AV, Hasenstein KH (2001) The effects of HGMFs on the plant gravisensing system. Adv Space Res 27:1001–1005PubMedCrossRefGoogle Scholar
  45. Konings A (1995) Gravitropism of roots: an evaluation of progress during the last three decades. Botanica Acta 44:195–223PubMedGoogle Scholar
  46. Kuznetsov OA, Hasenstein KH (1996) Intracellular magnetophoresis of amyloplasts and induction of root curvature. Planta 198:87–94PubMedCrossRefGoogle Scholar
  47. Legue V, Blancaflor E, Wymer C, Perbal G, Fantin D, Gilroy S (1997) Cytoplasmic free Ca2+ in Arabidopsis roots changes in response to touch but not gravity. Plant Physiol 114:789–800PubMedCrossRefGoogle Scholar
  48. Leitz G, Kang BH, Schoenwaelder ME, Staehelin LA (2009) Statolith sedimentation kinetics and force transduction to the cortical endoplasmic reticulum in gravity-sensing Arabidopsis columella cells. Plant Cell 21:843–860PubMedCrossRefGoogle Scholar
  49. Luschnig C, Gaxiola RA, Grisafi P, Fink GR (1998) EIR1, a root-specific protein involved in auxin transport, is required for gravitropism in Arabidopsis thaliana. Genes Develop 12:2175–2187PubMedCrossRefGoogle Scholar
  50. Matsumoto S, Kumasaki S, Soga K, Wakabayashi K, Hashimoto T, Hoson T (2010) Gravity-induced modifications to development in hypocotyls of Arabidopsis tubulin mutants. Plant Physiol 152:918–926PubMedCrossRefGoogle Scholar
  51. Michniewicz M, Zago M, Abas L, Weijers D, Schweighofer A, Meskiene I, Heisler M, Ohno C, Zhang J, Huang F, Schwab R, Weigel D, Meyerowitz EM, Luschnig C, Offringa R, Friml J (2007) Antagonistic regulation of PIN phosphorylation by PP2A and PINOID directs auxin flux. Cell 130:1044–1056PubMedCrossRefGoogle Scholar
  52. Monshausen GB, Sievers A (2002) Basipetal propagation of gravity-induced surface pH changes along primary roots of Lepidium sativum L. Planta 215:980–988PubMedCrossRefGoogle Scholar
  53. Monshausen GB, Miller ND, Murphy AS, Gilroy S (2011) Dynamics of auxin-dependent Ca2+ and pH signaling in root growth revealed by integrating high-resolution imaging with automated computer vision-based analysis. Plant J 65:309–318PubMedCrossRefGoogle Scholar
  54. Morita MT (2010) Directional gravity sensing in gravitropism. Annu Rev Plant Biol 61:706–720CrossRefGoogle Scholar
  55. Morita MT, Tasaka M (2004) Gravity sensing and signaling. Curr Opin Plant Biol 7:712–718PubMedCrossRefGoogle Scholar
  56. Morita MT, Kato T, Nagafusa K, Saito C, Ueda T, Nakano A, Tasaka M (2002) Involvement of the vacuoles of the endodermis in the early process of shoot gravitropism in Arabidopsis. Plant Cell 14:47–56PubMedCrossRefGoogle Scholar
  57. Morita MT, Sakaguchi K, Kiyose S, Taira K, Kato T, Nakamura M, Tasaka M (2006) A C2H2-type zinc finger protein, SGR5, is involved in early events of gravitropism in Arabidopsis inflorescence stems. Plant J 47:619–628PubMedCrossRefGoogle Scholar
  58. Mullen JL, Wolverton C, Ishikawa H, Evans ML (2000) Kinetics of constant gravitropic stimulus responses in Arabidopsis roots using a feedback system. Plant Physiol 123:665–670PubMedCrossRefGoogle Scholar
  59. Müller A, Guan C, Gälweiler L, Tänzler P, Huijser P, Marchant A, Parry G, Bennett M, Wisman E, Palme K (1998) AtPIN2 defines a locus of Arabidopsis for root gravitropism control. EMBO J 17:6903–6911PubMedCrossRefGoogle Scholar
  60. Nakamura M, Toyota M, Tasaka M, Morita MT (2011) An Arabidopsis E3 ligase SHOOT GRAVITROPISM 9 modulates the interaction between statoliths and F-Actin in gravity sensing. Plant Cell 23:1830–1848Google Scholar
  61. Niihama M, Uemura T, Saito C, Nakano A, Sato MH, Tasaka M, Morita MT (2005) Conversion of functional specificity in Qb-SNARE VTI1 homologues of Arabidopsis. Curr Biol 15:555–560PubMedCrossRefGoogle Scholar
  62. Niihama M, Takemoto N, Hashiguchi Y, Tasaka M, Morita MT (2009) ZIP genes encode proteins involved in membrane trafficking of the TGN-PVC/vacuoles. Plant Cell Physiol 50:2057–2068PubMedCrossRefGoogle Scholar
  63. Perbal G, Driss-Ecole D (2003) Mechanotransduction in gravisensing cells. Trends Plant Sci 8:498–504PubMedCrossRefGoogle Scholar
  64. Petrásek J, Friml J (2009) Auxin transport routes in plant development. Development 136:2675–2688PubMedCrossRefGoogle Scholar
  65. Sack FD (1987) The structure of the stem endodermis in etiolated pea seedlings. Can J Bot 65:1514–1519PubMedCrossRefGoogle Scholar
  66. Sack FD (1991) Plant gravity sensing. Int Rev Cytol 127:193–252PubMedCrossRefGoogle Scholar
  67. Sack FD (1997) Plastids and gravitropic sensing. Planta 203:S63–S68PubMedCrossRefGoogle Scholar
  68. Sack FD, Leopold AC (1985) Cytoplasmic streaming affects gravity-induced amyloplast sedimentation in maize coleoptiles. Planta 164:56–62PubMedCrossRefGoogle Scholar
  69. Sack FD, Suyemoto MM, Leopold AC (1984) Kinetics of amyloplast sedimentation in gravistimulated maize coleoptiles. Planta 161:459–464PubMedCrossRefGoogle Scholar
  70. Sack FD, Suyemoto MM, Leopold AC (1985) Amyloplast sedimentation kinetics in gravistimulated maize roots. Planta 165:295–300PubMedCrossRefGoogle Scholar
  71. Sack FD, Suyemoto MM, Leopold AC (1986) Amyloplast sedimentation and organelle saltation in living corn columella cells. Am J Bot 73:1692–1698PubMedCrossRefGoogle Scholar
  72. Saito C, Morita MT, Kato T, Tasaka M (2005) Amyloplasts and vacuolar membrane dynamics in the living graviperceptive cell of the Arabidopsis inflorescence stem. Plant Cell 17:548–558PubMedCrossRefGoogle Scholar
  73. Scott AC, Allen NS (1999) Changes in cytosolic pH within Arabidopsis root columella cells play a key role in the early signaling pathway for root gravitropism. Plant Physiol 121:1291–1298PubMedCrossRefGoogle Scholar
  74. Sedbrook JC, Chen R, Masson PH (1999) ARG1 (altered response to gravity) encodes a DnaJ-like protein that potentially interacts with the cytoskeleton. Proc Natl Acad Sci USA 96:1140–1145PubMedCrossRefGoogle Scholar
  75. Silady R, Kato T, Lukowitz W, Sieber P, Tasaka M, Somerville C (2004) The gravitropism defective 2 (grv2) mutants of Arabidopsis are deficient in a protein implicated in endocytosis in Caenorhabditis elegans. Plant Physiol 136:3095–3103PubMedCrossRefGoogle Scholar
  76. Skagen EB, Iversen TH (1999) Simulated weightlessness and hyper-g results in opposite effects on the regeneration of the cortical microtubule array in protoplasts from Brassica napus hypocotyls. Physiol Plant 106:318–325PubMedCrossRefGoogle Scholar
  77. Soga K, Wakabayashi K, Kamisaka S, Hoson T (2004) Graviperception in growth inhibition of plant shoots under hypergravity conditions produced by centrifugation is independent of that in gravitropism and may involve mechanoreceptors. Planta 218:1054–1061PubMedCrossRefGoogle Scholar
  78. Soga K, Wakabayashi K, Kamisaka S, Hoson T (2005) Mechanoreceptors rather than sedimentable amyloplasts perceive the gravity signal in hypergravity-induced inhibition of root growth in azuki bean. Funct Plant Biol 32:175–179PubMedCrossRefGoogle Scholar
  79. Spitzer C, Reyes FC, Buono R, Sliwinski MK, Haas TJ, Otegui MS (2009) The ESCRT-related CHMP1A and B proteins mediate multivesicular body sorting of auxin carriers in Arabidopsis and are required for plant development. Plant Cell 21:749–766PubMedCrossRefGoogle Scholar
  80. Steinmann T, Geldner N, Grebe M, Mangold S, Jackson C, Paris S, Gälweiler L, Palme K, Jurgens G (1999) Coordinated polar localization of auxin efflux carrier PIN1 by GNOM ARF GEF. Science 286:316–318PubMedCrossRefGoogle Scholar
  81. Swarup R, Kramer EM, Perry P, Knox K, Leyser HM, Haseloff J, Beemster GT, Bhalerao R, Bennett MJ (2005) Root gravitropism requires lateral root cap and epidermal cells for transport and response to a mobile auxin signal. Nat Cell Biol 7:1057–1065PubMedCrossRefGoogle Scholar
  82. Takahashi H (1997) Gravimorphogenesis: gravity-induced formation of the peg in cucumber seedlings. Planta 203:S164–S169PubMedCrossRefGoogle Scholar
  83. Takahashi H, Fujii N, Kamada M, Higashitani A, Yamazaki Y, Kobayashi A, Takano M, Yamasaki S, Sakata T, Mizuno H, Kaneko Y, Murata T, Kamigaichi S, Aizawa S, Yoshizaki I, Shimazu T, Fukui K (2000) Gravimorphogenesis of Cucurbitaceae plants: development of peg cells and graviperception mechanism in cucumber seedlings. Biol Sci Space 14:64–74PubMedCrossRefGoogle Scholar
  84. Tasaka M, Kato T, Fukaki H (1999) The endodermis and shoot gravitropism. Trends Plant Sci 4:103–107PubMedCrossRefGoogle Scholar
  85. Tsugeki R, Fedoroff NV (1999) Genetic ablation of root cap cells in Arabidopsis. Proc Natl Acad Sci USA 96:12941–12946PubMedCrossRefGoogle Scholar
  86. Utsuno K, Shikanai T, Yamada Y, Hashimoto T (1998) agr, an agravitropic locus of Arabidopsis thaliana, encodes a novel membrane-protein family member. Plant Cell Physiol 39:1111–1118PubMedCrossRefGoogle Scholar
  87. Weise SE, Kiss JZ (1999) Gravitropism of inflorescence stems in starch-deficient mutants of Arabidopsis. Int J Plant Sci 160:521–527PubMedCrossRefGoogle Scholar
  88. Weise SE, Kuznetsov OA, Hasenstein KH, Kiss JZ (2000) Curvature in Arabidopsis inflorescence stems is limited to the region of amyloplast displacement. Plant Cell Physiol 41:702–709PubMedCrossRefGoogle Scholar
  89. Witztum A, Gersani M (1975) The role of polar movement of IAA in the development of the peg in Cucumis sativus L. Botanical Gazette 136:5–16CrossRefGoogle Scholar
  90. Wysocka-Diller JW, Helariutta Y, Fukaki H, Malamy JE, Benfey PN (2000) Molecular analysis of SCARECROW function reveals a radial patterning mechanism common to root and shoot. Development 127:595–603PubMedGoogle Scholar
  91. Yamamoto K, Kiss JZ (2002) Disruption of the actin cytoskeleton results in the promotion of gravitropism in inflorescence stems and hypocotyls of Arabidopsis. Plant Physiol 128:669–681PubMedCrossRefGoogle Scholar
  92. Yano D, Sato M, Saito C, Sato MH, Morita MT, Tasaka M (2003) A SNARE complex containing SGR3/AtVAM3 and ZIG/VTI11 in gravity-sensing cells is important for Arabidopsis shoot gravitropism. Proc Natl Acad Sci USA 100:8589–8594PubMedCrossRefGoogle Scholar
  93. Zazímalová E, Murphy AS, Yang H, Hoyerová K, Hosek P (2010) Auxin transporters—why so many? Cold Spring Harbor Perspect Biol 2:a001552CrossRefGoogle Scholar
  94. Zenko C, Komatu K, Yokoyama R, Nishitani K, Kamisaka S (2003) Effect of hypergravity stimulus on XTH gene expression in Arabidopsis thaliana. Biol Sci Space 17:259–260PubMedGoogle Scholar
  95. Zieschang HE, Sievers A (1994) Differential flank growth. Adv Space Res 14:135–144PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Miyo Terao Moirta
    • 1
    Email author
  • Moritaka Nakamura
    • 1
  • Masao Tasaka
    • 1
  1. 1.Graduate School of Biological SciencesNara Institute of Science and TechnologyTakayama/Ikoma/NaraJapan

Personalised recommendations