Advertisement

Infection of Plants by the Human Pathogen Salmonella Typhimurium: Challenges and New Insights

  • Adam Schikora
  • Ana Victoria Garcia
  • Amélie Charrier
  • Heribert HirtEmail author
Chapter
Part of the Signaling and Communication in Plants book series (SIGCOMM, volume 14)

Abstract

Salmonella are the causative agents of the majority of food-borne bacterial poisonings and are responsible for more than 100 million infections of humans annually. In contrast to typhoid and paratyphoid fever, salmonellosis is frequent in the developed world. This is largely contributed by changes in the nutritional behavior resulting in eating more fruits and raw vegetables. Recently, it was discovered that the colonization of plants by Salmonella is a highly organized process. These results indicate that plants form part of the natural life cycle of Salmonella and open up new strategies to understand and combat bacterial diseases.

Keywords

Salicylic Acid Plant Pathogenic Bacterium Lettuce Leave Salmonella Pathogenicity Island Human Pathogenic Bacterium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The work was supported from grants of the ERANET Systems Biology project SHIPREC (Salmonella Host Interaction Project European Consortium)

References

  1. Arbibe L, Kim DW, Batsche E, Pedron T, Mateescu B, Muchardt C, Parsot C, Sansonetti PJ (2007) An injected bacterial effector targets chromatin access for transcription factor NF-kappaB to alter transcription of host genes involved in immune responses. Nat Immunol 8:47–56PubMedCrossRefGoogle Scholar
  2. Asai T, Tena G, Plotnikova J, Willmann MR, Chiu WL, Gomez-Gomez L, Boller T, Ausubel FM, Sheen J (2002) MAP kinase signalling cascade in Arabidopsis innate immunity. Nature 415:977–983PubMedCrossRefGoogle Scholar
  3. Barak JD, Whitehand LC, Charkowski AO (2002) Differences in attachment of Salmonella enterica serovars and Escherichia coli O157:H7 to alfalfa sprouts. Appl Environ Microbiol 68:4758–4763PubMedCrossRefGoogle Scholar
  4. Barak JD, Gorski L, Naraghi-Arani P, Charkowski AO (2005) Salmonella enterica virulence genes are required for bacterial attachment to plant tissue. Appl Environ Microbiol 71:5685–5691PubMedCrossRefGoogle Scholar
  5. Barak JD, Jahn CE, Gibson DL, Charkowski AO (2007) The role of cellulose and O-antigen capsule in the colonization of plants by Salmonella enterica. Mol Plant Microbe Interact 20:1083–1091PubMedCrossRefGoogle Scholar
  6. Barak JD, Gorski L, Liang AS, Narm KE (2009) Previously uncharacterized Salmonella enterica genes required for swarming play a role in seedling colonization. Microbiology 155:3701–3709PubMedCrossRefGoogle Scholar
  7. Barak JD, Kramer LC, Hao LY (2011) Colonization of tomato plants by Salmonella enterica is cultivar dependent, and type 1 trichomes are preferred colonization sites. Appl Environ Microbiol 77:498–504PubMedCrossRefGoogle Scholar
  8. Berger CN, Brown DJ, Shaw RK, Minuzzi F, Feys B, Frankel G (2011) Salmonella enterica strains belonging to O serogroup 1,3,19 induce chlorosis and wilting of Arabidopsis thaliana leaves. Environ Microbiol 13:1299–1308PubMedCrossRefGoogle Scholar
  9. Brandl MT (2006) Fitness of human enteric pathogens on plants and implications for food safety. Annu Rev Phytopathol 44:367–392PubMedCrossRefGoogle Scholar
  10. Chinchilla D, Zipfel C, Robatzek S, Kemmerling B, Nurnberger T, Jones JD, Felix G, Boller T (2007) A flagellin-induced complex of the receptor FLS2 and BAK1 initiates plant defence. Nature 448:497–500PubMedCrossRefGoogle Scholar
  11. Chini A, Fonseca S, Fernandez G, Adie B, Chico JM, Lorenzo O, Garcia-Casado G, Lopez-Vidriero I, Lozano FM, Ponce MR, Micol JL, Solano R (2007) The JAZ family of repressors is the missing link in jasmonate signalling. Nature 448:666–671PubMedCrossRefGoogle Scholar
  12. Collazo CM, Galan JE (1997) The invasion-associated type-III protein secretion system in Salmonella. Gene 192:51–59PubMedCrossRefGoogle Scholar
  13. Deiwick J, Salcedo SP, Boucrot E, Gilliland SM, Henry T, Petermann N, Waterman SR, Gorvel JP, Holden DW, Meresse S (2006) The translocated Salmonella effector proteins SseF and SseG interact and are required to establish an intracellular replication niche. Infect Immun 74:6965–6972PubMedCrossRefGoogle Scholar
  14. Desikan R, Hancock JT, Ichimura K, Shinozaki K, Neill SJ (2001) Harpin induces activation of the Arabidopsis mitogen-activated protein kinases AtMPK4 and AtMPK6. Plant Physiol 126:1579–1587PubMedCrossRefGoogle Scholar
  15. Durrant WE, Dong X (2004) Systemic acquired resistance. Ann Rev Phytopathol 42:185–209CrossRefGoogle Scholar
  16. Espinosa A, Guo M, Tam VC, Fu ZQ, Alfano JR (2003) The Pseudomonas syringae type III-secreted protein HopPtoD2 possesses protein tyrosine phosphatase activity and suppresses programmed cell death in plants. Mol Microbiol 49:377–387PubMedCrossRefGoogle Scholar
  17. Gerner-Smidt P, Hise K, Kincaid J, Hunter S, Rolando S, Hyytia-Trees E, Ribot EM, Swaminathan B (2006) PulseNet USA: a five-year update. Foodborne Pathog Dis 3:9–19PubMedCrossRefGoogle Scholar
  18. Gibson DL, White AP, Snyder SD, Martin S, Heiss C, Azadi P, Surette M, Kay WW (2006) Salmonella produces an O-antigen capsule regulated by AgfD and important for environmental persistence. J Bacteriol 188:7722–7730PubMedCrossRefGoogle Scholar
  19. Gohre V, Spallek T, Haweker H, Mersmann S, Mentzel T, Boller T, de Torres M, Mansfield JW, Robatzek S (2008) Plant pattern-recognition receptor FLS2 is directed for degradation by the bacterial ubiquitin ligase AvrPtoB. Curr Biol 18:1824–1832PubMedCrossRefGoogle Scholar
  20. Golberg D, Kroupitski Y, Belausov E, Pinto R, Sela S (2011) Salmonella typhimurium internalization is variable in leafy vegetables and fresh herbs. Int J Food Microbiol 145:250–257PubMedCrossRefGoogle Scholar
  21. Gomez-Gomez L, Boller T (2000a) FLS2: An LRR receptor-like kinase involved in the perception of the bacterial elicitor flagellin in Arabidopsis. Mol Cell 5:1003–1011PubMedCrossRefGoogle Scholar
  22. Gomez-Gomez L, Boller T (2000b) FLS2: an LRR receptor-like kinase involved in the perception of the bacterial elicitor flagellin in Arabidopsis. Mol Cell 5:1003–1011PubMedCrossRefGoogle Scholar
  23. Heaton JC, Jones K (2008) Microbial contamination of fruit and vegetables and the behaviour of enteropathogens in the phyllosphere: a review. J Appl Microbiol 104:613–626PubMedCrossRefGoogle Scholar
  24. Heffron F, Niemann G, Yoon H, Kidwai A, Brown RNE, McDermott JD, Smith R, Adkins JN (2011) Salmonella-secreted virulence factors. In: Porwollik S (ed) Salmonella: from genome to function. Caister Academic Press, San Diego, pp 187–223Google Scholar
  25. Hensel M (2000) Salmonella pathogenicity island 2. Mol Microbiol 36:1015–1023PubMedCrossRefGoogle Scholar
  26. Holden N, Pritchard L, Toth I (2009) Colonization out with the colon: plants as an alternative environmental reservoir for human pathogenic enterobacteria. FEMS Microbiol Rev 33:689–703PubMedCrossRefGoogle Scholar
  27. Iniguez AL, Dong Y, Carter HD, Ahmer BM, Stone JM, Triplett EW (2005) Regulation of enteric endophytic bacterial colonization by plant defenses. Mol Plant Microbe Interact 18:169–178PubMedCrossRefGoogle Scholar
  28. Iniquez LA, Dong Y, Carter HD, Ahmer BMM, Stone JM, Triplett EW (2005) Regulation of enteric endophytic bacterial colonization by plant defenses. Mol Plant Microbe Interact 18:169–178CrossRefGoogle Scholar
  29. Jones JDG, Dangl JL (2006) The plant immune system. Nature 444:323–329PubMedCrossRefGoogle Scholar
  30. Jung C, Lyou S, Yeu S, Kim M, Rhee S, Kim M, Lee J, Choi Y, Cheong J (2007) Microarray-based screening of jasmonate-responsive genes in Arabidopsis thaliana. Plant Cell Rep 26:1053–1063PubMedCrossRefGoogle Scholar
  31. Klerks MM, Franz E, van Gent-Pelzer M, Zijlstra C, van Bruggen AH (2007) Differential interaction of Salmonella enterica serovars with lettuce cultivars and plant-microbe factors influencing the colonization efficiency. ISME J 1:620–631PubMedCrossRefGoogle Scholar
  32. Kroupitski Y, Golberg D, Belausov E, Pinto R, Swartzberg D, Granot D, Sela S (2009) Internalization of Salmonella enterica in leaves is induced by light and involves chemotaxis and penetration through open stomata. Appl Environ Microbiol 75:6076–6086PubMedCrossRefGoogle Scholar
  33. Kuhle V, Hensel M (2002) SseF and SseG are translocated effectors of the type III secretion system of Salmonella pathogenicity island 2 that modulate aggregation of endosomal compartments. Cell Microbiol 4:813–824PubMedCrossRefGoogle Scholar
  34. Kuhle V, Hensel M (2004) Cellular microbiology of intracellular Salmonella enterica: functions of the type III secretion system encoded by Salmonella pathogenicity island 2. Cell Mol Life Sci 61:2812–2826PubMedCrossRefGoogle Scholar
  35. Lapidot A, Yaron S (2009) Transfer of Salmonella enterica serovar Typhimurium from contaminated irrigation water to parsley is dependent on curli and cellulose, the biofilm matrix components. J Food Prot 72:618–623PubMedGoogle Scholar
  36. Lara-Tejero M, Kato J, Wagner S, Liu X, Galan JE (2011) A sorting platform determines the order of protein secretion in bacterial type III systems. Science 331:1188–1191PubMedCrossRefGoogle Scholar
  37. Li H, Xu H, Zhou Y, Zhang J, Long C, Li S, Chen S, Zhou JM, Shao F (2007) The phosphothreonine lyase activity of a bacterial type III effector family. Science 315:1000–1003PubMedCrossRefGoogle Scholar
  38. Lin SL, Le TX, Cowen DS (2003) SptP, a Salmonella typhimurium type III-secreted protein, inhibits the mitogen-activated protein kinase pathway by inhibiting Raf activation. Cell Microbiol 5:267–275PubMedCrossRefGoogle Scholar
  39. Mazurkiewicz P, Thomas J, Thompson JA, Liu M, Arbibe L, Sansonetti P, Holden DW (2008) SpvC is a Salmonella effector with phosphothreonine lyase activity on host mitogen-activated protein kinases. Mol Microbiol 67:1371–1383PubMedCrossRefGoogle Scholar
  40. McGhie EJ, Brawn LC, Hume PJ, Humphreys D, Koronakis V (2009) Salmonella takes control: effector-driven manipulation of the host. Curr Opin Microbiol 12:117–124PubMedCrossRefGoogle Scholar
  41. Milillo SR, Badamo JM, Boor KJ, Wiedmann M (2008) Growth and persistence of Listeria monocytogenes isolates on the plant model Arabidopsis thaliana. Food Microbiol 25:698–704PubMedCrossRefGoogle Scholar
  42. Noel JT, Arrach N, Alagely A, McClelland M, Teplitski M (2010) Specific responses of Salmonella enterica to tomato varieties and fruit ripeness identified by in vivo expression technology. PLoS One 5:e12406PubMedCrossRefGoogle Scholar
  43. Nuhse TS, Peck SC, Hirt H, Boller T (2000) Microbial elicitors induce activation and dual phosphorylation of the Arabidopsis thaliana MAPK 6. J Biol Chem 275:7521–7526PubMedCrossRefGoogle Scholar
  44. Patel J, Sharma M (2010) Differences in attachment of Salmonella enterica serovars to cabbage and lettuce leaves. Int J Food Microbiol 139:41–47PubMedCrossRefGoogle Scholar
  45. Patel JC, Rossanese OW, Galan JE (2005) The functional interface between Salmonella and its host cell: opportunities for therapeutic intervention. Trends Pharmacol Sci 26:564–570PubMedCrossRefGoogle Scholar
  46. Plotnikova JM, Rahme LG, Ausubel FM (2000) Pathogenesis of the human opportunistic pathogen Pseudomonas aeruginosa PA14 in Arabidopsis. Plant Physiol 124:1766–1774PubMedCrossRefGoogle Scholar
  47. Prithiviraj B, Bais HP, Jha AK, Vivanco JM (2005) Staphylococcus aureus pathogenicity on Arabidopsis thaliana is mediated either by a direct effect of salicylic acid on the pathogen or by SA-dependent, NPR1-independent host responses. Plant J 42:417–432PubMedCrossRefGoogle Scholar
  48. Rangel JM, Sparling PH, Crowe C, Griffin PM, Swerdlow DL (2005) Epidemiology of Escherichia coli O157:H7 outbreaks, United States, 1982–2002. Emerg Infect Dis 11:603–609PubMedCrossRefGoogle Scholar
  49. Saggers EJ, Waspe CR, Parker ML, Waldron KW, Brocklehurst TF (2008) Salmonella must be viable in order to attach to the surface of prepared vegetable tissues. J Appl Microbiol 105:1239–1245PubMedCrossRefGoogle Scholar
  50. Schikora A, Carreri A, Charpentier E, Hirt H (2008) The dark side of the salad: Salmonella typhimurium overcomes the innate immune response of Arabidopsis thaliana and shows an endopathogenic lifestyle. PLoS One 3:e2279PubMedCrossRefGoogle Scholar
  51. Shan L, He P, Li J, Heese A, Peck SC, Nurnberger T, Martin GB, Sheen J (2008) Bacterial effectors target the common signaling partner BAK1 to disrupt multiple MAMP receptor-signaling complexes and impede plant immunity. Cell Host Microbe 4:17–27PubMedCrossRefGoogle Scholar
  52. Shirron N, Yaron S (2011) Active suppression of early immune response in Tobacco by the human pathogen Salmonella typhimurium. PLoS One 6:e18855PubMedCrossRefGoogle Scholar
  53. Sivapalasingam S, Friedman CR, Cohen L, Tauxe RV (2004) Fresh produce: a growing cause of outbreaks of foodborne illness in the United States, 1973 through 1997. J Food Prot 67:2342–2353PubMedGoogle Scholar
  54. Thines B, Katsir L, Melotto M, Niu Y, Mandaokar A, Liu G, Nomura K, He SY, Howe GA, Browse J (2007) JAZ repressor proteins are targets of the SCFCOI1 complex during jasmonate signalling. Nature 448:661–665PubMedCrossRefGoogle Scholar
  55. Üstün S, Müller P, Palmisano R, Hensel M, Börnke F. SseF, a type III effector protein from the mammalian pathogen Salmonella enterica, requires resistance-gene mediated signalling to activate cell death in the model plant Nicotiana benthamiana, submittedGoogle Scholar
  56. Waterman SR, Holden DW (2003) Functions and effectors of the Salmonella pathogenicity island 2 type III secretion system. Cell Microbiol 5:501–511PubMedCrossRefGoogle Scholar
  57. Westrell T, Ciampa N, Boelaert F, Helwigh B, Korsgaard H, Chriel M, Ammon A, Makela P (2009) Zoonotic infections in Europe in 2007: a summary of the EFSA-ECDC Annual Report. Euro Surveill 14Google Scholar
  58. Zhang J, Shao F, Li Y, Cui H, Chen L, Li H, Zou Y, Long C, Lan L, Chai J, Chen S, Tang X, Zhou JM (2007) A Pseudomonas syringae effector inactivates MAPKs to suppress PAMP-induced immunity in plants. Cell Host Microbe 1:175–185PubMedCrossRefGoogle Scholar
  59. Zhu Y, Li H, Long C, Hu L, Xu H, Liu L, Chen S, Wang DC, Shao F (2007) Structural insights into the enzymatic mechanism of the pathogenic MAPK phosphothreonine lyase. Mol Cell 28:899–913PubMedCrossRefGoogle Scholar
  60. Zimmerli L, Stein M, Lipka V, Schulze-Lefert P, Somerville S (2004) Host and non-host pathogens elicit different jasmonate/ethylene responses in Arabidopsis. Plant J 40:633–646PubMedCrossRefGoogle Scholar
  61. Zipfel C, Kunze G, Chinchilla D, Canierd A, Jones JDG, Boller T, Felix G (2006) Perception of the bacterial PAMP EF-Tu by the receptor EFR restricts Agrobacterium-mediated transformation. Cell 125:746–760CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Adam Schikora
    • 1
  • Ana Victoria Garcia
    • 2
  • Amélie Charrier
    • 2
  • Heribert Hirt
    • 2
    Email author
  1. 1.Institute for Plant Pathology and Applied ZoologyIFZ, JL University GiessenGiessenGermany
  2. 2.URGV Plant GenomicsINRA/CNRS/University of EvryEvryFrance

Personalised recommendations