Skip to main content

Recent Trends in the Olfactory Responses of Insect Natural Enemies to Plant Volatiles

  • Chapter
  • First Online:
Biocommunication of Plants

Part of the book series: Signaling and Communication in Plants ((SIGCOMM,volume 14))

Abstract

The area of plant volatile signaling in multitrophic interactions has developed one of the fascinating and fastest growing fields of research. It has been reported that plant leaves generally release minor quantities of volatile compounds, but when a plant is damaged by insects, several more volatiles are released. Numerous studies have demonstrated the dynamic role of herbivore-damaged plants in the attraction of natural enemies (predators and parasitoids). Volatile plant compounds released in response to insect feeding serve as a chemical signal for herbivore natural enemies. Volatiles released by insect-damaged plants function as attractants and affect the behavior of the natural enemies of herbivorous insects. They also display diverse effects on insect behaviors and are also used as foraging cues by parasitoids and predators. After damaged by phytophagous insects, some host plants could attract parasitoids and predators as an indirect defense. They can also induce defense responses in adjacent plants. Trees of some species are reported to produce volatile signals that affect the behavior of natural enemies. A summary on the recent trends published since 2000 to date on the plant volatiles in relation to insect natural enemies was specified. The use of plant volatiles in integrated pest management programs was also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Almohamad R, Verheggen FJ, Francis F, Haubruge E (2007) Predatory hoverflies select their oviposition site according to aphid host plant and aphid species. Entomol Exp Appl 125:13–21

    Google Scholar 

  • Bell WJ (1990) Searching behavior pattern in insects. Annu Rev Entomol 35:447–467

    Google Scholar 

  • Bezemer TM, Wagenaar R, Van Dam NM, Wackers FL (2003) Interactions between above- and belowground insect herbivores as mediated by the plant defense system. Oikos 101:555–562

    Google Scholar 

  • Birkett MA, Chamberlain K, Guerrieri E, Pickett JA, Wadhams LJ, Yasuda T (2003) Volatiles from whitefly-infested plants elicit a host-location response in the parasitoid, Encarsia formosa. J Chem Ecol 29:1589–1600

    PubMed  CAS  Google Scholar 

  • Bruin J, Dicke M (2001) Chemical information transfer between wounded and unwounded plants: backing up future. Biochem Syst Ecol 29:1103–1113

    CAS  Google Scholar 

  • Bukovinszky T, Gols R, Posthumus MA, Vet LEM, Van Lenteren JC (2005) Variation in plant volatiles and attraction of the parasitoid Diadegma semiclausum (Hellén). J Chem Ecol 31:461–480

    PubMed  CAS  Google Scholar 

  • Carver M, Franzmann B (2001) Lysiphlebus Forster (Hymenoptera: Braconidae: Aphidiinae) in Australia. Aust J Entomol 40:198–201

    Google Scholar 

  • Colazza S, McElfresh JS, Millar JG (2004) Identification of volatile synomones, induced by Nezara viridula feeding and oviposition on bean spp., that attract the egg parasitoid Trissolcus basalis. J Chem Ecol 30:945–964

    PubMed  CAS  Google Scholar 

  • Connor EC, Rott AS, Samietz J, Dorn S (2007) The role of the plant in attracting parasitoids: response to progressive mechanical wounding. Entomol Exp Appl 125:145–155

    Google Scholar 

  • Conti E, Salerno G, Bin F, Williams HJ, Vinson SB (2003) Chemical cues from Murgantia histrionica eliciting host location and recognition in the egg parasitoid Trissolcus brochymenae. J Chem Ecol 29:115–130

    PubMed  CAS  Google Scholar 

  • Cory JS, Hoover K (2006) Plant-mediated effects in insect–pathogen interactions. Trends Ecol Evol 21:278–286

    PubMed  Google Scholar 

  • Costa A, Reeve JD (2011) Upwind flight response of the bark beetle predator Thanasimus dubius towards olfactory and visual cues in a wind tunnel. Agric Forest Entomol 13. doi: 10.1111/j.1461-9563.2011.00519.x

    Google Scholar 

  • De Boer JG, Dicke M (2006) Olfactory learning by predatory arthropods. Anim Biol 56:143–155

    Google Scholar 

  • De Boer JG, Posthumus MA, Dicke M (2004) Identification of volatiles that are used in discrimination between plants infested with prey or nonprey herbivores by a predatory mite. J Chem Ecol 30:2215–2230

    PubMed  Google Scholar 

  • De Boer JG, Snoeren TAL, Dicke M (2005) Predatory mites learn to discriminate between plant volatiles induced by prey and nonprey herbivores. Anim Behav 69:869–879

    Google Scholar 

  • De Moraes CM, Lewis WJ, Paré PW, Alborn HT, Tumlinson JH (1998) Herbivore-infested plants selectively attract parasitoids. Nature 393:570–573

    Google Scholar 

  • Dicke M, van Loon JJA, Soler R (2009) Chemical complexity of volatiles from plants induced by multiple attack. Nat Chem Biol 5:317–324

    PubMed  CAS  Google Scholar 

  • Dixon FG (2000) Insect predator–prey dynamics: ladybird beetles and biological control. Cambridge University Press, UK

    Google Scholar 

  • Dolphin K, Quicke DLJ (2001) Estimating the global species richness of an incompletely described taxon: an example using parasitoid wasps (Hymenoptera: Braconidae). Biol J Linn Soc Lond 73:279–286

    Google Scholar 

  • Dong WX, Zhang F, Fang YL, Zhang ZN (2008) Electroantennogram responses of aphid parasitoid Aphidius gifuensis to aphid pheromones and host–plant volatiles. Chinese J Ecol 27:591–595

    CAS  Google Scholar 

  • Dorn S, Hern A, Mattiacci L (2002) Time course of induced volatile emission of mature fruits upon herbivory, and response of conspecific adult herbivores and of a natural antagonist. IOBC/WPRS Bull 25:99–102

    Google Scholar 

  • Drukker B, Bruin J, Sabelis MW (2000) Anthocorid predators learn to associate herbivore-induced plant volatiles with presence or absence of prey. Physiol Entomol 25:260–265

    CAS  Google Scholar 

  • Erbilgin N, Raffa KF (2000) Effects of host tree species on attractiveness of tunnelling pine engravers, Ips pini (Coleoptera: Scolytidae), to conspecifics and insect predators. J Chem Ecol 26:823–840

    CAS  Google Scholar 

  • Ero MM, Neale CJ, Hamacek E, Peek T, Clarke AR (2011) Preference and performance of Diachasmimorpha kraussii (Fullaway) (Hymenoptera: Braconidae) on five commercial fruit species. J Appl Entomol 135:214–224

    Google Scholar 

  • Francis F, Lognay G, Haubruge E (2004) Olfactory responses to aphid and host plant volatile releases: (E)-b-Farnesene an effective kairomone for the predator Adalia bipunctata. J Chem Ecol 30:741–755

    PubMed  CAS  Google Scholar 

  • Fukushima J, Kainoh Y, Honda H, Takabayashi J (2002) Learning of herbivore-induced and nonspecific plant volatiles by a parasitoid, Cotesia kariyai. J Chem Ecol 28:579–586

    PubMed  CAS  Google Scholar 

  • Gencer NS, Kumral NA, Sivritepe HO, Seidi M, Susurluk H, Senturk B (2009) Olfactory response of the ladybird beetle Stethorus gilvifrons to two preys and herbivore-induced plant volatiles. Phytoparasitica 37:217–224

    Google Scholar 

  • Girling RD, Hassall M (2008) Behavioural responses of the seven-spot ladybird Coccinella septempunctata to plant headspace chemicals collected from four crop Brassicas and Arabidopsis thaliana, infested with Myzus persicae. Agric Forest Entomol 10:297–306

    Google Scholar 

  • Girling RD, Hassall M, Turner JG, Poppy GM (2006) Behavioural responses of the aphid parasitoid Diaeretiella rapae to volatiles from Arabidopsis thaliana induced by Myzus persicae. Entomol Exp Appl 120:1–9

    Google Scholar 

  • Girling RD, Stewart-Jones A, Dherbecourt J, Staley JT, Wright DJ, Poppy GM (2011) Parasitoids select plants more heavily infested with their caterpillar hosts: a new approach to aid interpretation of plant headspace volatiles. Proc R Soc B 278(1718):2646–2653

    PubMed  CAS  Google Scholar 

  • Glinwood R, Ahmed E, Qvarfordt E, Ninkovic V, Pettersson J (2009) Airborne interactions between undamaged plants of different cultivars affect insect herbivores and natural enemies. Arthropod–Plant Interact 3:215–224

    Google Scholar 

  • Gu H, Dorn S (2000) Genetic variation in behavioral response to herbivore-infested plants in the parasitic wasp, Cotesia glomerata (L.) (Hymenoptera: Braconidae). J Insect Behav 13:141–156

    Google Scholar 

  • Halitschke R, Stenberg JA, Kessler D, Kessler A, Baldwin IT (2008) Shared signals—“alarm calls” from plants increase apparency to herbivores and their enemies in nature. Ecol Lett 11:24–34

    PubMed  Google Scholar 

  • Hanumantharaya L, Basavana goud K, Krishna Naik L, Kulkarni KA (2010) Electroantennogram responses of Chrysoperla carnea (Stephens) and Helicoverpa armigera (Hubner) to volatiles of different cultivars of cotton. Karnataka J Agric Sci 23:123–126

    Google Scholar 

  • Hatano E, Kunert G, Michaud JP, Weisser WW (2008) Chemical cues mediating aphid location by natural enemies. Eur J Entomol 105:797–806

    CAS  Google Scholar 

  • Heit GE, Sardoy P, Cohen GR, Mareggiani G (2007) Locomotor activity of Cycloneda sanguinea (Coleoptera: Coccinellidae) exposed to volatile semiochemicals and to direct contact with the odour source. Rev Soc Entomol Argent 66:197–203

    Google Scholar 

  • Henneman ML, Dyreson EG, Takabayashi J, Raguso RA (2002) Response to walnut olfactory and visual cues by the parasitic wasp Diachasmimorpha juglandis. J Chem Ecol 28:2221–2244

    PubMed  CAS  Google Scholar 

  • Hern A, Dorn S (2002) Induction of volatile emissions from ripening apple fruits infested with Cydia pomonella and the attraction of adult females. Entomol Exp Appl 102:145–151

    CAS  Google Scholar 

  • Hilker M, Bläske V, Kobs C, Dippel C (2000) Kairomonal effects of sawfly sex pheromones on egg parasitoids. J Chem Ecol 26:2591–2601

    CAS  Google Scholar 

  • Hilker M, Kobs C, Varma M, Schrank K (2002) Insect egg deposition induces Pinus sylvestris to attract egg parasitoids. J Exp Biol 205:455–461

    PubMed  Google Scholar 

  • Hoballah ME, Turlings TCJ (2005) The role of fresh versus old leaf damage in the attraction of parasitic wasps to herbivore-induced maize volatiles. J Chem Ecol 31:2003–2018

    PubMed  CAS  Google Scholar 

  • Hoballah MEF, Tamò C, Turlings TCJ (2002) Differential attractiveness of induced odors emitted by eight maize varieties for the parasitoid Cotesia marginiventris: is quality or quantity important? J Chem Ecol 28:951–968

    PubMed  CAS  Google Scholar 

  • Ibrahim MA, Nissinen A, Holopainen JK (2005) Response of Plutella xylostella and its parasitoid Cotesia plutellae to volatile compounds. J Chem Ecol 31:1969–1984

    PubMed  CAS  Google Scholar 

  • Ichiki RT, Kainoh Y, Yamawaki Y, Nakamura S (2011) The parasitoid fly Exorista japonica uses visual and olfactory cues to locate herbivore-infested plants. Entomol Exp Appl 138:175–183

    Google Scholar 

  • Inbar M, Gerling D (2008) Plant-mediated interactions between whiteflies, herbivores, and natural enemies. Annu Rev Entomol 53:431–448

    PubMed  CAS  Google Scholar 

  • Ishiwari H, Suzuki T, Maeda T (2007) Essential compounds in herbivore-induced plant volatiles that attract the predatory mite Neoseiulus womersleyi. J Chem Ecol 33:1670–1681

    PubMed  CAS  Google Scholar 

  • Jang EB, Messing RH, Klungness LM, Carvalho LA (2000) Flight tunnel responses of Diachasmimorpha longicaudata (Ashmead) (Hymenoptera: Braconidae) to olfactory and visual stimuli. J Insect Behav 13:525–538

    Google Scholar 

  • Jönsson M (2005) Responses to oilseed rape and cotton volatiles in insect herbivores and parasitoids. PhD thesis, Swedish University of Agricultural Sciences, Alnarp, Sweden.

    Google Scholar 

  • Kalule T, Wright DJ (2004) The influence of cultivar and cultivar-aphid odours on the olfactory response of the parasitoid Aphidius colemani. J Appl Entomol 128:120–125

    Google Scholar 

  • Kappers IF, Aharoni A, van Herpen TWJM, Luckerhoff LLP, Dicke M, Bouwmeester HJ (2005) Genetic engineering of terpenoid metabolism attracts bodyguards to Arabidopsis. Science 309:2070–2072

    PubMed  CAS  Google Scholar 

  • Karimy A, Ashouri A, Kharazi Pakdel A, Goldansaz SH, Kosari AA, Moayeri HR (2006) Olfactory response of the predatory bug, Orius albidipennis to volatile blends of strawberry and cucumber infested by spider mite. Commun Agric Appl Biol Sci 71:399–402

    PubMed  CAS  Google Scholar 

  • Kessler A, Baldwin IT (2001) Defensive function of herbivore-induced plant volatile emissions in nature. Science 291:2141–2144

    PubMed  CAS  Google Scholar 

  • Krugner R, Johnson MW, Daane KM, Morse JG (2008) Olfactory responses of the egg parasitoid, Gonatocerus ashmeadi Girault (Hymenoptera: Mymaridae), to host plants infested by Homalodisca vitripennis (Germar) (Hemiptera: Cicadellidae). Biol Control 47:8–15

    Google Scholar 

  • Le Rü B, Makosso MJP (2001) Prey habitat location by the cassava mealybug predator Exochomus flaviventris: Olfactory responses to odor of plant, mealybug, plant-mealybug complex, and plant-mealy-natural enemy complex. J Insect Behav 14:557–572

    Google Scholar 

  • Liu SS, Jiang LH (2003) Differential parasitism of Plutella xylostella (Lepidoptera: Plutellidae) larvae by the parasitoid Cotesia plutellae (Hymenoptera: Braconidae) on two host plant species. Bull Entomol Res 93:65–72

    PubMed  Google Scholar 

  • Liu Y, Guo GX, Chen JL, Ni HX (2005) Behavioral and electrophysiological responses of four predatory insect species to semiochemicals of wheat. Acta Entomol Sin 48:161–165

    CAS  Google Scholar 

  • Maeda T, Liu Y (2006) Intraspecific variation in the olfactory response of the predatory mite Neoseiulus womersleyi Schicha (Acari: Phytoseiidae) to different amount of spider mite-infested plant volatiles. Appl Entomol Zool 41:209–215

    CAS  Google Scholar 

  • Maeda T, Takabayashi J, Yano S, Takafuji A (2000) The effects of rearing conditions on the olfactory response of predatory mites, Phytoseiulus persimilis and Amblyseius womersleyi (Acari: Phytoseiidae). Appl Entomol Zool 35:345–351

    Google Scholar 

  • Maeda T, Liu Y, Ishiwari H, Shimoda T (2006) Conditioned olfactory responses of a predatory mite Neoseiulus womersleyi, to volatiles from prey-infested plants. Entomol Exp Appl 121:167–175

    CAS  Google Scholar 

  • Manrique V, Jones WA, Williams LH III, Bernal JS (2005) Olfactory responses of Anaphes iole (Hymenoptera: Mymaridae) to volatile signals derived from host habitats. J Insect Behav 18:89–104

    Google Scholar 

  • McGregor RR, Gillespie DR (2004) Olfactory responses of the omnivorous generalist predator Dicyphus hesperus to plant and prey odours. Entomol Exp Appl 112:201–205

    Google Scholar 

  • Mehrnejad RM, Copland MJW (2006) Behavioral responses of the parasitoid Psyllaephagus pistaciae (Hymenoptera: Encyrtidae) to host plant volatiles and honeydew. Entomol Sci 9:31–37

    Google Scholar 

  • Mithöfer A, Wanner G, Boland W (2005) Effects of feeding Spodoptera littoralis on lima bean leaves. II. Continuous mechanical wounding resembling insect feeding is sufficient to elicit herbivory-related volatile emission. Plant Physiol 137:1160–1168

    PubMed  Google Scholar 

  • Moayeri HRS, Ashouri A, Poll L, Enkegaard A (2007) Olfactory response of a predatory mirid to herbivore induced plant volatiles: multiple herbivory vs. single herbivory. J Appl Entomol 131:326–332

    CAS  Google Scholar 

  • Mumm R, Hilker M (2005) The significance of background odour for an egg parasitoid to detect plants with host eggs. Chem Senses 30:337–343

    PubMed  CAS  Google Scholar 

  • Ngumbi EN, Ngi-Song AJ, Njagi ENM, Torto R, Wadhams LJ, Birkett MA, Pickett JA, Overholt WA, Torto B (2005) Responses of the stem borer larval endoparasitoid Cotesia flavipes (Hymenoptera: Braconidae) to plant derived synomones: laboratory and field cage experiments. Biocontrol Sci Technol 15:271–279

    Google Scholar 

  • Ninkovic V, Pettersson J (2003) Searching behaviour of the seven spotted ladybird, Coccinella septempunctata—effects of plant–plant odour interaction. Oikos 100:65–70

    Google Scholar 

  • Ninkovic V, Al Abassi S, Pettersson J (2001) The influence of aphid-induced plant volatiles on ladybird beetle searching behavior. Biol Control 21:191–195

    Google Scholar 

  • Ojeda-Camacho M, Rodríguez LC, Niemeyer MH (2001) Evaluación olfactométrica del parasitoide Aphidius ervi (Hymenoptera: Braconidae), de diferentes proveniencias y niveles de experiencia de oviposición, frente a volátiles de plantas de complejos planta-hospedero. Rev Chil Entomol 28:63–69

    Google Scholar 

  • Oppenheim SJ, Gould F (2002) Is attraction fatal? The effects of herbivore-induced plant volatiles on herbivore parasitism. Ecology 83:3416–3425

    Google Scholar 

  • Pérez ML, Argdín MF, Powell W (2007) Foraging behaviour of the parasitoid Lysiphlebus testaceipes (Hymenoptera: Braconidae) in response to plant volatiles, with reference to biocontrol of aphids in peri-urban vegetable production systems. Biocontrol Sci Technol 7:677–686

    Google Scholar 

  • Pettersson EM (2001) Volatile attractants for three Pteromalid parasitoids attacking concealed spruce bark beetles. Chemoecology 11:89–95

    CAS  Google Scholar 

  • Pettersson J, Ninkovic V, Glinwood R, Al Abassi S, Birkett MA, Pickett JA, Wadhams L (2008) Chemical stimuli supporting foraging behavior of Coccinella septempunctata L. (Coleoptera: Coccinellidae): volatiles and allelobiosis. Appl Entomol Zool 43:315–321

    Google Scholar 

  • Pierre PS, Dugravot S, Ferry A, Soler R, van Dam NM, Cortesero A-M (2011) Aboveground herbivory affects indirect defences of brassicaceous plants against the root feeder Delia radicum Linnaeus: laboratory and field evidence. Ecol Entomol 36:326–334

    Google Scholar 

  • Pinto ML, Wajnberg E, Colazza S, Curty C, Fauvergue X (2004) Olfactory response of two aphid parasitoids, Lysiphlebus testaceipes and Aphidius colemani, to aphid-infested plants from a distance. Entomol Exp Appl 110:159–164

    Google Scholar 

  • Poelman EH, van Loon JJ, Dicke M (2008) Consequences of variation in plant defense for biodiversity at higher tropic levels. Trends Plant Sci 13:534–54D

    PubMed  CAS  Google Scholar 

  • Puente M, Magori K, Kennedy GG, Gould F (2008) Impact of herbivore-induced plant volatiles on parasitoid foraging success: a spatial simulation of the Cotesia rubecula, Pieris rapae, and Brassica oleracea system. J Chem Ecol 34:959–70

    PubMed  CAS  Google Scholar 

  • Raina R, Joseph M, Avalokiteswar S (2004) Electroantennogram responses of Chrysoperla carnea (Stephens) to volatiles. Indian J Exp Biol 42:1230–1234

    PubMed  CAS  Google Scholar 

  • Rasmann S, Kollner TG, Degenhardt J, Hiltpold I, Toepfer S, Kuhlmann U, Gershenzon J, Turlings TCJ (2005) Recruitment of entomopathogenic nematodes by insect-damaged maize roots. Nature 434:732–737

    PubMed  CAS  Google Scholar 

  • Raymond B, Darby AC, Douglas AE (2000) The olfactory responses of coccinellids to aphids on plants. Entomol Exp Appl 95:113–117

    Google Scholar 

  • Reddy GVP (2002) Plant volatiles mediate orientation and plant preference by the predator Chrysoperla carnea Stephens (Neuroptera: Chrysopidae). Biol Control 25:49–55

    CAS  Google Scholar 

  • Reddy GVP, Guerrero A (2004) Interactions of insect pheromones and plant semiochemicals. Trends Plant Sci 9:253–261

    PubMed  CAS  Google Scholar 

  • Reddy GVP, Guerrero A (2010) New pheromones and insect control strategies. Vitam Horm 83:493–519

    PubMed  CAS  Google Scholar 

  • Reddy GVP, Raman A (2011) Visual cues are relevant in behavioral control measures for Cosmopolites sordidus (Coleoptera: Curculionidae). J Econ Entomol 104:436–442

    PubMed  Google Scholar 

  • Reddy GVP, Holopainen JK, Guerrero A (2002) Olfactory responses of Plutella xylostella natural enemies to host pheromone, larval frass, and green leaf cabbage volatiles. J Chem Ecol 28:131–143

    PubMed  CAS  Google Scholar 

  • Reddy GVP, Tabone E, Smith MT (2004) Mediation of host selection and oviposition behavior in the diamondback moth Plutella xylostella and its predator Chrysoperla carnea by chemical cues from cole crops. Biol Control 29:270–277

    CAS  Google Scholar 

  • Roda AL, Baldwin IT (2003) Molecular technology reveals how the induced direct defenses of plants work. Basic Appl Ecol 4:15–26

    CAS  Google Scholar 

  • Röse USR, Tumlinson JH (2005) Systemic induction of volatile release in cotton: how specific is the signal to herbivory? Planta 222:327–335

    PubMed  Google Scholar 

  • Sanchez JA, Gillespie DR, McGregor RR (2004) Plant preference in relation to life history traits in the zoophytophagous predator Dicyphus hesperus. Entomol Exp Appl 112:7–19

    Google Scholar 

  • Schaller M, Nentwig W (2000) Olfactory orientation of the seven-spot ladybird beetle, Coccinella septempunctata (Coleoptera: Coccinelidae): attraction of adults to plants and conspecific females. Eur J Entomol 97:155–159

    Google Scholar 

  • Seenivasagan T, Paul AVN (2011) Electroantennogram and flight orientation response of Cotesia plutellae to hexane extract of cruciferous host plants and larvae of Plutella xylostella. Entomol Res 41:7–17

    Google Scholar 

  • Shimoda T (2010) A key volatile infochemical that elicits a strong olfactory response of the predatory mite Neoseiulus californicus, an important natural enemy of the two-spotted spider mite Tetranychus urticae. Exp Appl Acarol 50:9–22

    PubMed  CAS  Google Scholar 

  • Shimoda T, Dicke M (2000) Attraction of a predator when can it be adaptive? To chemical information related to nonprey. Behav Ecol 11:606–613

    Google Scholar 

  • Shimoda T, Takabayashi J (2001) Response of Oligota kashmirica benefica, a specialist insect predator of spider mites, to volatiles from prey-infested leaves under both laboratory and field conditions. Entomol Exp Appl 101:41–47

    Google Scholar 

  • Shimoda T, Ozawa R, Arimura G, Takabayashi J, Nishioka T (2002) Olfactory responses of two specialist insect predators of spider mites toward plant volatiles from lima bean leaves induced by jasmonic acid and/or methyl salicylate. Appl Entomol Zool 37:535–541

    CAS  Google Scholar 

  • Shimoda T, Ozawa R, Sano K, Yano E, Takabayashi J (2005) The involvement of volatile infochemicals from spider mites and from food–plants in prey location of the generalist predatory mite Neoseiulus californicus. J Chem Ecol 31:2019–2032

    PubMed  CAS  Google Scholar 

  • Shiojiri K, Takabayashi J, Yano S, Takafuji A (2000) Flight response of parasitoids toward plant-herbivore complexes: a comparative study of two parasitoid-herbivore systems on cabbage plants. Appl Entomol Zool (Jpn) 35:87–92

    Google Scholar 

  • Shiojiri K, Takabayashi J, Yano S, Takafuji A (2001) Infochemically mediated tritrophic interaction webs on cabbage plants. Popul Ecol 43:23–29

    Google Scholar 

  • Silva CC, Moraes MCB, Laumann RA, Borges M (2006) Sensory response of the egg parasitoid Telenomus podisi to stimuli from the bug Euschistus heros. Pesq Agropec Bras 41:1093–1098

    Google Scholar 

  • Silva JWP, Bento JMS, Zucchi RA (2007) Olfactory response of three parasitoid species (Hymenoptera: Braconidae) to volatiles of guavas infested or not with fruit fly larvae (Diptera: Tephritidae). Biol Control 41:304–311

    Google Scholar 

  • Smid HM, van Loon JJA, Posthumus MA, Vet LEM (2002) GC-EAG-analysis of volatiles from Brussels sprouts plants damaged by two species of Pieris caterpillars: olfactory receptive range of a specialist and a generalist parasitoid wasp species. Chemoecology 12:169–176

    CAS  Google Scholar 

  • Soler R, Bezemer TM, Van der Putten WH, Vet LEM, Harvey JA (2005) Root herbivore effects on aboveground herbivore, parasitoid and hyperparasitoid performance via changes in plant quality. J Anim Ecol 74:1121–1130

    Google Scholar 

  • Soler R, Harvey JA, Kamp AFD, Vet LEM, Van der Putten WH, Van Dam NM, Stuefer JF, Gols R, Hordijk CA, Bezemer MT (2007) Root herbivores influence the behaviour of an aboveground parasitoid through changes in plant-volatile signals. Oikos 116:367–376

    CAS  Google Scholar 

  • Soroka JJ, Dosdall LM, Olfert OO, Seidle E (2004) Root maggots (Delia spp., Diptera: Anthomyiidae) in prairie canola (Brassica napus L. and B. rapa L.): spatial and temporal surveys of root damage and prediction of damage levels. Can J Plant Sci 84:1171–1182

    Google Scholar 

  • Symondson WOC, Sunderland KD, Greenstone MH (2002) Can generalist predators be effective biocontrol agents? Annu Rev Entomol 47:561–594

    PubMed  CAS  Google Scholar 

  • Sznajder B, Sabelis MW, Egas M (2010) Response of predatory mites to a herbivore-induced plant volatile: genetic variation for context-dependent behaviour. J Chem Ecol 36:680–688

    PubMed  CAS  Google Scholar 

  • Takahashi H, Takafuji A, Takabayashi J, Yano S, Shimoda T (2001) Seasonal occurrence of specialist and generalist insect predators of spider mites and their response to volatiles from spider-mite-infested plants in Japanese pear orchards. Exp Appl Acarol 25:393–402

    PubMed  CAS  Google Scholar 

  • Takemoto H, Powell W, Pickett J, Kainoh Y, Takabayashi J (2009) Learning is involved in the response of parasitic wasps Aphidius ervi (Haliday) (Hymenoptera: Braconidae) to volatiles from a broad bean plant, Vicia faba (Fabaceae), infested by aphids Acyrthosiphon pisum (Harris) (Homoptera: Aphididae). Appl Entomol Zool 44:23–28

    Google Scholar 

  • Tamò C, Ricard I, Held M, Davison AC, Turlings TCJ (2006) A comparison of naïve and conditioned responses of three generalist endoparasitoids of lepidopteran larvae to host-induced plant odours. Anim Biol 56:205–220

    Google Scholar 

  • Tapia DH, Morales F, Grez AA (2010) Olfactory cues mediating prey-searching behavior in interacting aphidophagous predators: are semiochemicals key factors in predator-facilitation. Entomol Exp Appl 137:28–35

    Google Scholar 

  • Tatemoto S, Shimoda T (2008) Olfactory responses of the predatory mites (Neoseiulus cucumeris) and insects (Orius strigicollis): to two different plant species infested with onion thrips (Thrips tabaci). J Chem Ecol 34:605–613

    PubMed  CAS  Google Scholar 

  • Tinzaara W, Gold CS, Dicke M, van Huis A (2005) Olfactory responses of banana weevil predators to volatiles from banana pseudostem tissue and synthetic pheromone. J Chem Ecol 31:1537–1553

    PubMed  CAS  Google Scholar 

  • Uefune M, Nakashima Y, Tagashira E, Takabayashi J, Takagi M (2010) Response of Wollastoniella rotunda (Hemiptera: Anthocoridae) to volatiles from eggplants infested with its prey Thrips palmi and Tetranychus kanzawai: prey species and density effects. Biol Control 54:19–22

    CAS  Google Scholar 

  • Unsicker SB, Kunert G, Gershenzon J (2009) Protective perfumes: the role of vegetative volatiles in plant defense against herbivores. Curr Opin Plant Biol 12:479–85

    PubMed  CAS  Google Scholar 

  • Van Loon JJA, De Vos EW, Dicke M (2000) Orientation behaviour of the predatory hemipteran Perillus bioculatus to plant and prey odors. Entomol Exp Appl 96:51–58

    Google Scholar 

  • Van Poecke RMP, Posthumus MA, Dicke M (2001) Herbivore-induced volatile production by Arabidopsis thaliana leads to attraction of the parasitoid Cotesia rubecula: Chemical, behavioural, and gene-expression analysis. J Chem Ecol 27:1911–1928

    PubMed  Google Scholar 

  • Van Tol RWHM, van der Sommen ATC, Boff MIC, van Bezooijen J, Sabelis MW, Smits PH (2001) Plants protect their roots by alerting the enemies of grubs. Ecol Lett 4:292–294

    Google Scholar 

  • Van Wijk M, De Bruijn PJA, Sabelis MW (2008) Predatory mite attraction to herbivore-induced plant odor is not a consequence of attraction to individual herbivore-induced plant volatiles. J Chem Ecol 34:791–803

    PubMed  Google Scholar 

  • Verheggen F, Arnaud L, Capella Q, Francis F, Haubruge E (2005) Perception of aphid infested tomato plant volatiles by the predator Episyrphus balteatus. Comp Biochem Physiol 141A:225–236

    Google Scholar 

  • Vet LEM (2001) Parasitoid searching efficiency links behavior to population processes. Appl Entomol Zool 36:399–408

    Google Scholar 

  • Vuorinen T, Nerg A-M, Ibrahim MA, Reddy GVP, Holopainen JK (2004) Emission of Plutella xylostella–induced compounds from cabbages grown at elevated CO2 and orientation behavior of the natural enemies. Plant Physiol 135:1984–1992

    PubMed  CAS  Google Scholar 

  • Wang Q, Gu H, Dorn S (2003) Selection on olfactory response to semiochemicals from a plant–host complex in a parasitic wasp. Heredity 91:430–435

    PubMed  CAS  Google Scholar 

  • Wei JN, Kang L (2006) Electrophysiological and behavioral responses of a parasitic wasp to plant volatiles induced by two leaf miner species. Chem Senses 31:467–477

    PubMed  CAS  Google Scholar 

  • Wen-xia D, Zhong-ning Z, Yu-ling F, Feng Z, Wei K (2000) Response of parasitoid Microplitis mediator to plant volatiles in an olfactometer. Insect Sci 7:344–350

    Google Scholar 

  • Wyckhuys KA, Heimpel GE (2007) Response of the soybean aphid parasitoid Binodoxys communis to olfactory cues from target and non-target host-plant complexes. Entomol Exp Appl 123:149–158

    Google Scholar 

  • Yoneya K, Kugimiya S, Takabayashi J (2009) Can herbivore-induced plant volatiles inform predatory insect about the most suitable stage of its prey? Physiol Entomol 34:379–386

    CAS  Google Scholar 

  • Yu H, Zhang Y, Wyckhuys KAG, Wu K, Gao X, Guo Y (2010) Electrophysiological and behavioral responses of Microplitis mediator (Hymenoptera: Braconidae) to caterpillar-induced volatiles from cotton. Environ Entomol 39:600–609

    PubMed  Google Scholar 

  • Zhu J, Park KC (2005) Methyl salicylate, a soybean aphid induced plant volatile attractive to the predator Coccinella septempunctata. J Chem Ecol 31:1733–1746

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Professional Development Program (PDP) of the USDA-Western SARE project #2009-EW09-012/Utah State University sub award # 090757010; FY 2009 Pacific Islands Area Conservation Innovation Grants (PIA-CIG) Program, Grant Agreement No. 69-9251-9-822, The Natural Resources Conservation Service (NRCS)-USDA; Western Integrated Pest Management Center (WIPMC) Award # 2007-51120-03885/University of California, Davis sub award # 07 -001492-GUAM3; and USDA Hatch funds (Project# GUA0561) and W-2185 (Project # GUA0612). In accordance with federal law and USDA policy, this institution is prohibited from discrimination on the basis of race, color, national origin, sex, age, or disability.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gadi V. P. Reddy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Reddy, G.V.P. (2012). Recent Trends in the Olfactory Responses of Insect Natural Enemies to Plant Volatiles. In: Witzany, G., Baluška, F. (eds) Biocommunication of Plants. Signaling and Communication in Plants, vol 14. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23524-5_15

Download citation

Publish with us

Policies and ethics