Nematode Communication with Plants is Surprisingly Complex and Multidimensional

  • David Mc. K. BirdEmail author
  • Peter M. DiGennaro
Part of the Signaling and Communication in Plants book series (SIGCOMM, volume 14)


Over a century of nematology research has focused on plant parasites that establish intimate symbioses with their host plants, yet the molecular basis of this interaction remains largely unknown. Central to the lifecycle of these obligate parasites is their ability to manipulate host tissue into specialized and dedicated feeding sites. This process is predicated on the ability of the nematodes to interject signaling cues to exploit the developmental plasticity of the host. Recent evidence, including the availability of significant amounts of parasitic genome data, points to diverse interactions that underpin a complex communication network. In this chapter, we examine the hierarchy of these interactions and propose a framework for placing the interactions in a formal context of parasitic symbioses.


Cyst Nematode Soybean Cyst Nematode Shikimate Pathway Chorismate Mutase Host Cytoplasm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Abad P, Williamson VM (2010) Plant nematode interaction: a sophisticated dialogue. Adv Bot Res 53:147–192CrossRefGoogle Scholar
  2. Abad P, Gouzy J, Aury J-M, Castagnone-Sereno P, Danchin EGJ, Deleury E, Perfus-Barbeoch L et al (2008) Genome sequence of the metazoan plant-parasitic nematode Meloidogyne incognita. Nat Biotechnol 8:909–915CrossRefGoogle Scholar
  3. Berg RH, Taylor CG (2009) Cell biology of plant-nematode interactions, plant cell monographs, vol 15. Springer, Berlin, p 273Google Scholar
  4. Bird DM (1992) Mechanisms of the Meloidogyne–host interaction. In: Gommers FJ, Maas PWTH (eds) Nematology from molecule to ecosystem. ESN press, WageningenGoogle Scholar
  5. Bird DM (1996) Manipulation of host gene expression by root-knot nematodes. J Parasitol 82:881–888PubMedCrossRefGoogle Scholar
  6. Bird DM (2004) Signaling between nematodes and plants. Curr Opin Plant Biol 7:372–376PubMedCrossRefGoogle Scholar
  7. Bird AF, Bird J (1991) The structure of nematodes. Academic, San DiegoGoogle Scholar
  8. Bird AF, Loveys BR (1980) The involvement of cytokinins in a host–parasite relationship between the tomato (Lycopersiconesculentum) and a nematode (Meloidogynejavanica). Parasitology 80:497–505CrossRefGoogle Scholar
  9. Bird DM, Williamson VM, Abad P, McCarter J, Danchin EGJ, Castagnone-Sereno P, Opperman CH (2009) The genomes of root-knot nematodes. Annu Rev Phytopathol 47:333–351PubMedCrossRefGoogle Scholar
  10. Blaxter, M, Bird, D (1997) Parasitic nematodes. In: Riddle, D.L et al (eds) C. elegans II. Cold Spring Harbor Laboratory Press, p 851–878Google Scholar
  11. Blaxter ML, DeLey P, Garey J, Liu LX, Scheldeman P, Vierstraete A, Vanfletern J, Mackey LY, Dorris M, Frisse LM, Vida JT, Thomas WK (1998) A molecular evolutionary framework for the phylum Nematoda. Nature 392:71–75PubMedCrossRefGoogle Scholar
  12. Borgonie G, Garcia-Moyano A, Litthauer D, Bert W, Bester A, van Heerden E, Moller C, Erasmus M, Onstott TC (2011) Nematoda from the terrestrial deep subsurface of South Africa. Nature 474:79–82PubMedCrossRefGoogle Scholar
  13. Cebolla A, VinardellJ M, Kiss E, Oláh B, Roudier F, Kondorosi A, Kondorosi E (1999) The mitotic inhibitor ccs52 is required for endoreduplication and ploidy-dependent cell enlargement in plants. EMBO J 18:4476–4484PubMedCrossRefGoogle Scholar
  14. Chen Q, Rehman S, Smant G, Jones JT (2005) Functional analysis of pathogenicity proteins of the potato cyst nematode Globoderarostochiensis using RNAi. Mol Plant–Microbe Interact 18:621–625PubMedCrossRefGoogle Scholar
  15. Davis EL, Mitchum MG (2005) Nematodes. Sophisticated parasites of legumes. Plant Physiology 137:1182–1188PubMedCrossRefGoogle Scholar
  16. de Almeida EJ, Vleesschauwer VD, Burssens S, Celenza JL Jr, Inzé D, Van Montagu M, Engler G, Gheysen G (1999) Molecular markers and cell cycle inhibitors show the importance of cell cycle progression in nematode-induced galls and synctia. Plant Cell 11:793–807Google Scholar
  17. deMeutter J, Tytgat T, Witters E, Gheysen G, van Onckelen H, Gheysen G (2003) Identification of cytokinins produced by the plant parasitic nematodes Heteroderaschachtii and Meloidogyne incognita. Mol Plant Pathol 4:271–277CrossRefGoogle Scholar
  18. Dropkin VH, Helgeson JP, Upper CD (1969) The hypersensitivity reaction of tomato resistant to Meloidogyne incognita: reversal by cytokinins. J Nematol 1:55–61PubMedGoogle Scholar
  19. Foucher F, Kondorosi E (2000) Cell cycle regulation in the course of nodule organogenesis in Medicago. Plant Mol Biol 43:773–786PubMedCrossRefGoogle Scholar
  20. Gao B, Allen R, Maier T, Davis EL, Baum TJ, Hussey RS (2001) Identification of putative parasitism genes expressed in the esophageal gland cells of the soybean cyst nematode Heteroderaglycines. Mol Plant–Microbe Interact 14:1247–1254PubMedCrossRefGoogle Scholar
  21. Glazer I, Orion D, Apelbaum A (1983) Interrelationships between ethylene production, gall formation, and root-knot nematode development in tomato plants infected with Meloidogyne javanica. J Nematol 15:539–544Google Scholar
  22. Glazer I, Apelbaum A, Orion D (1985) Effect of inhibitors and stimulators of ethylene production on gall development in Meloidogynejavanica-infected tomato roots. J Nematol 17:145–149PubMedGoogle Scholar
  23. Goverse A, Rouppe van der Voort J, Roupe van der Voort C, Kavelaars A, Smant G, Schots A, Bakker J, Helder J (1999) Naturally-induced secretions of the potato cyst nematode co-stimulate the proliferation of both tobacco leaf protoplasts and human peripheral blood mononuclear cells. Mol Plant–Microbe Interact 12:872–881PubMedCrossRefGoogle Scholar
  24. Goverse A, de Almeida EJ, Verhees J, van der Krol S, Helder J, Gheysen G (2000) Cell cycle activation by plant-parasitic nematodes. Plant Mol Biol 43:747–761PubMedCrossRefGoogle Scholar
  25. Grunewald W, Karimi M, Wieczorek K, Van de Capelle E, Grundler F, Beeckman T, Inze D, Gheysen G (2008) A role for AtWRKY23 in feeding site establishment of plant-parasitic nematodes. Plant Physiol 148:358–368PubMedCrossRefGoogle Scholar
  26. Grunewald W, Cannoot B, Friml J, Gheysen G (2009) Parasitic nematodes modulate PIN-mediated auxin transport to facilitate infection. PLoS Pathog 5:e1000266PubMedCrossRefGoogle Scholar
  27. Hirsch S, Kim J, Muñoz A, Heckmann AB, Downie JA, Oldroyd GED (2009) GRAS proteins form a DNA binding complex to induce gene expression during nodulation signaling in Medicago truncatula. Plant Cell 21:545–557PubMedCrossRefGoogle Scholar
  28. Holterman M, Holovachov O, van den Elsen S, van Megen H, Bongers T, Bakker J, Helder J (2008) Small subunit ribosomal DNA-based phylogeny of basal Chromadoria (Nematoda) suggests that transitions from marine to terrestrial habitats (and vice versa) require relatively simple adaptations. Mol Phylogenet Evol 48:758–763PubMedCrossRefGoogle Scholar
  29. Huang G, Gao B, Maier T, Allen R, Davis EL, Baum TJ, Hussey RS (2003) A profile of putative parasitism genes expressed in the esophageal gland cells of the root-knot nematode Meloidogyne incognita. Mol Plant–Microbe Interact 16:376–381PubMedCrossRefGoogle Scholar
  30. Huang G, Dong R, Allen R, Davis EL, Baum TJ, Hussey RS (2006) A root-knot nematode secretory peptide functions as a ligand for a plant transcription factor. Mol Plant–Microbe Interact 19:463–470PubMedCrossRefGoogle Scholar
  31. Ito Y, Nakanomyo I, Motose H, Iwamoto K, Sawa S, Dohmae N, Fukuda H (2006) Dodeca-CLE peptides as suppressors of plant stem cell differentiation. Science 313:842–845PubMedCrossRefGoogle Scholar
  32. Jaubert S, Milac AL, Petrescu AJ, de Almeida-Engler J, Abad P, Rosso M-N (2005) In planta secretion of a calreticulin by migratory and sedentary stages of root-knot nematode. Mol Plant–Microbe Interact 18:1277–1284PubMedCrossRefGoogle Scholar
  33. Jones JT, Furlanetto C, Phillips MS (2007) The role of flavonoids produced in response to cyst nematode infection of Arabidopsis thaliana. Nematology 9:671–677CrossRefGoogle Scholar
  34. Kim S-K, Reddy SK, Nelson BC, Vasquez GB, Davis A, Howard AJ, Patterson S, Gilliland GL, Ladner JE, Reddy PT (2006) Biochemical and structural characterization of the secreted chorismatemutase (Rv1885c) from Mycobacterium tuberculosis H37Rv: An *aroq enzyme not regulated by the aromatic amino acids. J Bacteriol 24:8638–8648CrossRefGoogle Scholar
  35. Koltai H, Bird DM (2000) Epistatic repression of PHANTASTICA and class 1 KNOTTED genes is uncoupled in tomato. Plant J 22:455–459PubMedCrossRefGoogle Scholar
  36. Koltai H, Dhandaydham M, Opperman C, Tomas J, Bird D (2001) Overlapping plant signal transduction pathways induced by a parasitic nematode and a rhizobial endosymbiont. Mol Plant–Microbe Interact 14:1168–1177PubMedCrossRefGoogle Scholar
  37. Krupasagar V, Barker KR (1969) Increased cytokinin concentrations in tobacco infected with the root-knot nematode Meloidogyne incognita. Phytopathology 56:885Google Scholar
  38. Lambert KN, Allen KD, Sussex IM (1999) Cloning and characterization of an esophageal-gland-specific chorismatemutase from the phytoparasitic nematode Meloidogyne javanica. Mol Plant–Microbe Interact 12:328–336PubMedCrossRefGoogle Scholar
  39. Linford MB (1937) Stimulated activity of natural enemies of nematodes. Science 85:123–124PubMedCrossRefGoogle Scholar
  40. Lohar DP, Bird DM (2003) Lotus japonicus: a new model to study root-parasitic nematodes. Plant Cell Physiol 44:1176–1184PubMedCrossRefGoogle Scholar
  41. Lohar DP, Schaff JE, Laskey JG, Kieber JJ, Bilyeu KD, Bird DM (2004) Cytokinins play opposite roles in lateral root formation, and nematode and rhizobial symbioses. Plant J 38:203–214PubMedCrossRefGoogle Scholar
  42. Loveys RR, Bird AF (1973) The influence of nematodes on photosynthesis in tomato plants. Physiol Plant Pathol 3:525–529CrossRefGoogle Scholar
  43. Lu S-W, Chen S, Wang J, Yu H, Chronis D, Mitchum MG, Wang X (2009) Structural and functional diversity of CLAVATA3/ESR (CLE)-like genes from the potato cyst nematode Globoderarostochiensis. Mol Plant–Microbe Interact 22:1128–1142PubMedCrossRefGoogle Scholar
  44. McCarter J (2009). Molecular approaches toward resistance to plant-parasitic nematodes. Cell Biology of Plant Nematode Parasitism:239–267Google Scholar
  45. Mitchum MG, Wang X, Davis EL (2008) Diverse and conserved roles of CLE peptides. Curr Opin Plant Biol 11:75–81PubMedCrossRefGoogle Scholar
  46. Ni J, Guo Y, Jin H, Hartsell J, Clark SE (2011) Characterization of a CLE processing activity. Plant Mol Biol 75:67–75PubMedCrossRefGoogle Scholar
  47. Ohyama K, Ogawa M, Matsubayashi Y (2008) Identification of a biologically active, small, secreted peptide in Arabidopsis by in silico gene screening, followed by LC–MS-based structure analysis. Plant J 55:152–160PubMedCrossRefGoogle Scholar
  48. Olsen AN, Skriver K (2003) Ligand mimicry? Plant-parasitic nematode polypeptide with similarity to CLAVATA3. Trends Plant Sci 8:55–57PubMedCrossRefGoogle Scholar
  49. Opperman CH, Bird DM, Williamson VM, Rokhsar DS, Burke M, Cohn J, Cromer J et al (2008) Sequence and genetic map of Meloidogynehapla: a compact nematode genome for plant parasitism. Proc Natl Acad Sci USA 105:14802–14807PubMedCrossRefGoogle Scholar
  50. Perry, R, Moens, M, Starr, J (2009) Root-knot Nematodes. CABI, Wallingford, UKCrossRefGoogle Scholar
  51. Sasso S, Ramakrishnan C, Gamper M, Hilvert D, Kast P (2005) Characterization of the secreted chorismatemutase from the pathogen Mycobacterium tuberculosis. FEBS J 272:375–389PubMedCrossRefGoogle Scholar
  52. Sikora S, Strongin A, Godzik A (2005) Convergent evolution as a mechanism for pathogenic adaptation. Trends Microbiol 13:522–527PubMedCrossRefGoogle Scholar
  53. Wang X, Mitchum MG, Gao B, Li C, Diab H, Baum TJ, Hussey RS, Davis EL (2005) A parasitism gene from a plant-parasitic nematode with function similar to CLAVATA3/ESR (CLE) of Arabidopsis thaliana. Mol Plant Pathol 6:187–191PubMedCrossRefGoogle Scholar
  54. Wang J, Joshi S, Korkin D, Mitchum MG (2010) Variable domain I of nematode CLEs directs post-translational targeting of CLE peptides to the extracellular space. Plant Signal Behav 5:1633–1635PubMedCrossRefGoogle Scholar
  55. Weerasinghe RR, Bird DM, Allen NS (2005) Root-knot nematodes and bacterial Nod factors elicit common signal transduction events in Lotus japonicus. Proc Natl Acad Sci USA 102:3147–3152PubMedCrossRefGoogle Scholar
  56. Whitford R, Fernandez A, De Groodt R, Ortega E, Hilson P (2008) Plant CLE peptides from two distinct functional classes synergistically induce division of vascular cells. Proc Natl Acad Sci USA 105:18625–18630PubMedCrossRefGoogle Scholar
  57. Wubben MJE, Su H, Rodermel SR, Baum TJ (2001) Susceptibility to the sugar beet cyst nematode is modulated by ethylene signal transduction in Arabidopsis thaliana. Mol Plant–Microbe Interact 14:1206–1212PubMedCrossRefGoogle Scholar
  58. Yamagami, T, Atsunari T, Kayoko Y, William FH, Leslie AH, Athanasios T (2003) Biochemical diversity among the 1-amino-cyclopropane-1-carboxylate synthase isozymes encoded by the Arabidopsis gene family. Journal of Biological Chemistry 49:49102–49112CrossRefGoogle Scholar
  59. Zunke U (1990) Observations on the invasion and endoparasitic behavior of the root lesion nematode Pratylenchuspenetrans. J Nematol 22:309–320PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Department of Plant PathologyNC State UniversityRaleighUSA

Personalised recommendations