Skip to main content

Improved Light Extraction Efficiency in GaN-Based Light Emitting Diodes

  • Chapter
  • First Online:
GaN and ZnO-based Materials and Devices

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 156))

  • 3442 Accesses

Abstract

The improvement in light extraction efficiency (LEE) of GaN-based LEDs is one of the most important areas for increasing the external quantum efficiency for solid-state lighting applications. We summarize the advances in this field. GaN-based light-emitting diodes (LEDs) have made a lot of progress with regard to growth, doping, and p-ohmic contacts [1–3]. The external quantum efficiency (EQE) of LEDs is equal to IQE (internal quantum efficiency) ×LEE (light extraction efficiency). Although the internal quantum efficiency (IQE) has been improved by advances in epitaxial growth techniques, the methods used to extract the photons from the quantum wells (QWs) still need to be improved. It has been reported that the LEE has to be over 90% to achieve 200 lm/W in white LEDs.According to Snell’s law, the light extraction angle (escape angle or escape cone) between GaN (n ∼ 2. 5) and air (n ∼ 1) was about 23. 5. Snell’s law states that the escape angle (θ) can be calculated by \(\theta {=\sin }^{-1}({n}_{\mathrm{air}}/{n}_{\mathrm{GaN}})\) where n air and n GaN are the index of air and GaN, respectively. Therefore, the total internal reflection (TIR) resulting from the narrow escape cone prevents the protons from escaping from the semiconductor. In other applications such as optical fibers and optical waveguides, TIR is required. If Indium tin oxide, which is a common transparent conducting oxide (n ∼ 2. 19), is used, the escape angle can be increased up to 27, which is still narrow. The photons outside of the escape angle will be re-absorbed after multiple reflections or increase the operating temperature by dissipation (Fig. 5.1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S. Nakamura, G. Fasol, S. Pearton, The Blue Laser Diode: The Complete Story/Edition 2, (Springer Berlin, 2000)

    Google Scholar 

  2. E.F. Schubert, J.K. Kim, Science, 308, 1274 (2005)

    Article  CAS  Google Scholar 

  3. M. Fukuda, Optical Semiconductor Devices, (Wiley, New York, 1999)

    Google Scholar 

  4. I. Schnitzer, E. Yablonovitch, C. Caneau, T.J. Gmitter, A. Scherer, Appl. Phys. Lett. 63(16), 2174 (1993)

    Article  CAS  Google Scholar 

  5. T. Fujii, Y. Gao, R. Sharma, E.L. Hu, S.P DenBaars, S. Nakamura, Appl. Phys. Lett. 84, 855 (2004)

    Google Scholar 

  6. Younghun Jung, Kwang Hyeon Baik, Fan Ren, Stephen J. Pearton, Jihyun Kim, J. Electrochem. Soc., 157(6), H676–H678 (2010)

    Google Scholar 

  7. D. Li, M. Sumiya, S. Fuke, D. Yang, D. Que, Y. Suzuki, Y. Fukuda, J. Appl. Phys. 90, 4219 (2001)

    Article  CAS  Google Scholar 

  8. H.M. Ng, N.G. Weimann, A. Chowdhury, J. Appl. Phys. 94, 650 (2003)

    Article  CAS  Google Scholar 

  9. Younghun Jung, Jihyun Kim, Soohwan Jang, Kwang Hyeon Baik, Yong Gon Seo, Sung-Min Hwang, Opt. Exp. Vol. 18, No.9, pp. 9728–9732 (2010)

    Google Scholar 

  10. C.H. Chiu, T.C. Lu, H.W. Huang, C.F. Lai, C.C. Kao, J.T. Chu, C.C. Yu, H.C. Kuo, S.C. Wang, C.F. Lin, T.H. Hsueh, Nanotechnology 18, 445201 (2007)

    Article  Google Scholar 

  11. X. Qian, J. Li, D. Wasserman, W.D. Goodhue, Appl. Phys. Lett. 93, 231907 (2008)

    Article  Google Scholar 

  12. W. Stöber, A. Fink, E.J. Bohn, Colloid Interface Sci., 26, 62 (1968)

    Article  Google Scholar 

  13. Y. Li, W. Cai, G. Duan, Chem. Mater., 20, 615 (2008)

    Article  CAS  Google Scholar 

  14. Ching-Mei Hsu, Stephen T. Connor, Mary X. Tang, Yi Cui, Appl. Phys. Lett. 93, 133109 (2008)

    Article  Google Scholar 

  15. Wai Yuen Fu, Kenneth Kin-Yip Wong, H.W. Choi, Appl Phys Lett 95, 133125 (2009)

    Google Scholar 

  16. Yan-Kuin Su, Jian-Jhong Chen, Chuing-Liang Lin, Shi-Ming Chen Wen-Liang Li, Chien-Chih Kao, Jpn J Appl Phys., 47(8), 6706 (2008)

    Article  Google Scholar 

  17. B.J. Kim, H. Jung, S.H. Kim, J. Bang, J. Kim, IEEE Photonics Technol. Lett., Vol. 21, pp.700–7002 (2009)

    CAS  Google Scholar 

  18. Se Gyu Jang, Dae-Geun Choi, Chul-Joon Heo, Su Yeon Lee, Seung-Man Yang, Adv. Mater. 20, 4862 (2008)

    Google Scholar 

  19. B.E.A. Saleh, M.C. Teich, Fundamentals of Photonics, 2nd (Wiley-Interscience, 2006)

    Google Scholar 

  20. J.K. Kim, S. Chhajed, M.F. Schubert, E.F. Schubert, A.J. Fischer, M.H. Crawford, J. Cho, H. Kim, C. Sone, Adv. Mater., 20, 801 (2008)

    Article  CAS  Google Scholar 

  21. J.J. Wierer, A. David, M.M. Megens, Nat. Photonics, 3, 163 (2009)

    Article  CAS  Google Scholar 

  22. A. David, H. Benisty, C. Weisbuch, J. Display Tech., 3, 133 (2007)

    Article  CAS  Google Scholar 

  23. J.S. Biteen, D. Pacifici, N.S. Lewis, H.A. Atwaer, Nano Lett. 5, 1768 (2005)

    Article  CAS  Google Scholar 

  24. K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, A. Scherer, Nat. Mater. 3, 601 (2004)

    Article  CAS  Google Scholar 

  25. K. Okamoto, I. Niki, A. Scherer, Y. Narukawa, T. Mukai, Y. Kawakami, Appl. Phys. Lett., 87, 071102 (2005)

    Article  Google Scholar 

  26. M.-K. Kwon, J.-Y. Kim, B.-K. Kim, I.-K. Park, C.-Y. Cho, C.C. Byeon, S.-J. Park, Adv. Mater., 20, 1253 (2008)

    Article  CAS  Google Scholar 

  27. C.E. Lee, H.C. Kuo, Y.C. Lee, M.R. Tsai, T.C. Lu, S.C. Wang, C.T. Kuo, IEEE Photon. Technol. Lett., 20 (3), 184 (2008)

    Article  CAS  Google Scholar 

  28. C.-C. Kao, H.-C. Kuo, H.-W. Huang, J.-T. Chu, Y.-C. Peng, Y.-L. Hsieh, C.Y. Luo, S.-C. Wang, C.-C. Yu, C.-F. Lin, IEEE Photon. Technol. Lett., 17 (1), 19, (2005)

    Article  CAS  Google Scholar 

  29. C.S. Chang, S.J. Chang, Y.K. Su, C.T. Lee, Y.C. Lin, W.C. Lai, S.C. Shei, J.C. Ke, H.M. Lo, IEEE Photon. Technol. Lett., 16 (3), 750, (2004)

    Article  CAS  Google Scholar 

  30. M. Yamada, T. Mitani, Y. Narukawa, S. Shioji, I. Niki, S. Sonobe, K. Deguchi, M. Sano T. Mukai, Jpn. J. Appl. Phys., 41, L1431 (2002)

    Article  CAS  Google Scholar 

  31. K. Tadatomo, H. Okagawa, Y. Ohuchi, T. Tsunekawa, T. Jyouichi, Y. Imada, M. Kato, H. Kudo, T. Taguchi, Phys. Stat. Sol. (a) 188(1), 121–125 (2001)

    Google Scholar 

Download references

Acknowledgements

The research at Korea University was supported by the Carbon Dioxide Reduction and Sequestration Center, one of the twenty-first Century Frontier R&D Program funded by the Ministry of Education, Science and Technology of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jihyun Kim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kim, J. (2012). Improved Light Extraction Efficiency in GaN-Based Light Emitting Diodes. In: Pearton, S. (eds) GaN and ZnO-based Materials and Devices. Springer Series in Materials Science, vol 156. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23521-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-23521-4_5

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-23520-7

  • Online ISBN: 978-3-642-23521-4

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics