Skip to main content

ZnO/MgZnO Quantum Wells

  • Chapter
  • First Online:
  • 3459 Accesses

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 156))

Abstract

In this review, we discuss first some of the recent works to reveal properties of conventional ZnO/ZnMgO QWs grown c-axis oriented. This will include the properties of the quantum confined Stark effect (QCSE) that results from the internal electric field in the unit cell. We will then discuss various unconventional QW growths, including non-polar ZnO QWs, graded barrier QWs and double QWs. We finish with a review of current progress towards light emitting devices based on ZnO/ZnMgO QWs. ZnO has been a material of interest for over 50 years; however, the ability to grow high-quality epilayers of ZnO and ZnO-based ternary systems[1–4 has led to renewed interest over the past decade in ZnO for device applications. The demand for optoelectronic devices in the blue-UV region of the electromagnetic spectrum has been well established and ZnO possesses several properties that are superior to GaN for many applications [5, 6]. The large exciton binding energy of ∼ 60 meV suggests excitonic emission that is very efficient above room temperature, leading to great potential for light emitting devices. The large piezoelectric and pyroelectric coefficients suggest potential for applications as piezoelectric sensors or actuators. Other advantages of ZnO are its comparatively low growth temperatures [5], low optical power threshold for lasing [7], radiation hardness [8, 9] and biocompatibility [10]. ZnO may also find application as a transparent conductive oxide [11] to replace indium-tin-oxide (ITO) in photovoltaic applications because it remains transparent even when doped above the level of degeneracy [12]. This ability to grow high-quality epilayers and thin films rapidly led to the development of ZnO-based quantum wells (QWs). The two main attractions of developing QWs are the tunability offered for the transition energy, and the increased exciton binding energy, which typically leads to increased oscillator strength and greater efficiency for light emitting devices. The two most common types of ZnO-based QWs are Zno/ZnMgo and ZnO/ZnCdO-based systems, where alloying with Mg leads to an increase in the band gap and with Cd leads to a reduction in the band gap. In this chapter, we will focus on the more common ZnO/ZnMgO QWs. The band gap of Znx − 1Mg x O is given by 3. 37 + 2. 51x eV [13], which together with a conduction to valence band offset ratio of approximately 70:30 leads to type I confinement in \({\mathrm{ZnO/Zn}}_{x-1}{\mathrm{Mg}}_{x}\mathrm{O}\) QWs. The value of x is limited to less than 0.43 [13] in these systems as above this value phase separation tends to occur. Nevertheless, even with values significantly less than 0.43, strong confinement is obtained. In such ZnO/ZnMgO QWs, exciton binding energies up to 120 meV have been reported [14]. The biexciton binding energy is also enhanced in QWs going from 15 meV in bulk ZnO to ∼ 25 meV in ZnO/ZnMgO QWs [15–17]. With biexciton binding energies greater than the thermal energy, it is possible that biexcitons may play a major role in the optical properties at room temperature. Since the first ZnO epitaxial layers were grown, high-quality ZnO quantum wells have been grown by several different methods, including molecular beam epitaxy (MBE), metal-organic vapour phase epitaxy (MOVPE) and pulsed laser deposition (PLD). The growth in almost all cases is c-axis oriented despite growth on a range of single crystal substrates, including sapphire, ZnO and Si oriented along various crystal planes.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. T. Makino, C.H. Chia, N.T. Tuan, H.D. Sun, Y. Segawa, M. Kawasaki, A. Ohtomo, K. Tamura, H. Koinuma, Appl. Phys. Lett. 77(7), 975–977 (2000)

    Article  CAS  Google Scholar 

  2. A. Ohtomo, K. Tamura, M. Kawasaki, T. Makino, Y. Segawa, Z.K. Tang, G.K.L. Wong, Y. Matsumoto, H. Koinuma. Appl. Phys. Lett. 77(14), 2204–2206 (2000)

    Article  CAS  Google Scholar 

  3. H.D. Sun, T. Makino, N.T. Tuan, Y. Segawa, Z.K. Tang, G.K.L. Wong, M. Kawasaki, A. Ohtomo, K. Tamura, H. Koinuma, Appl. Phys. Lett. 77(26), 4250–4252 (2000)

    Article  CAS  Google Scholar 

  4. A. Ohtomo, M. Kawasaki, I. Ohkubo, H. Koinuma, T. Yasuda, Y. Segawa, Appl. Phys. Lett. 75(7), 980–982 (1999)

    Article  CAS  Google Scholar 

  5. C. Jagadish, S.J. Pearton, Zinc Oxide Bulk, Thin Films and Nanostructures (Elsevier, Oxford, 2006)

    Google Scholar 

  6. S.H. Park, D. Ahn, T.W. Kang, S.J. Lee, in Optoelectronic applications of ZnO/ZnMgO quantum well lasers in the blue and the UV spectral regions, ed. by W. Jantsch, F. Schaffler. Physics of Semiconductors, Pts A and B, vol. 893 (2007), pp. 261–262

    Google Scholar 

  7. U. Ozgur, H. Morkoc, in Zinc Oxide Bulk, Thin Films and Nanostructures, ed. by C. Jagadish, S.J. Pearton (Elsevier, Oxford, 2006), p. 175

    Google Scholar 

  8. S.O. Kucheyev, J.S. Williams, C. Jagadish, J. Zou, C. Evans, A.J. Nelson, A.V. Hamza, Phys. Rev. B 67(9), 094115 (2003)

    Article  Google Scholar 

  9. A. Janotti, C.G. Van de Walle, Rep. Prog. Phys. 72(12), 126501 (2009)

    Article  Google Scholar 

  10. Y.W. Heo, F. Ren, D.P. Norton, in Zinc Oxide Bulk, Thin Films and Nanostructures, ed. by C. Jagadish, S.J. Pearton (Elsevier, Oxford, 491) p. 491

    Google Scholar 

  11. K. Koike, I. Nakashima, K. Hashimoto, S. Sasa, M. Inoue, M. Yano, Appl. Phys. Lett. 87(11), 112106 (2005)

    Article  Google Scholar 

  12. A. Dev, A. Elshaer, T. Voss, IEEE Journal of Selected Topics in Quantum Electronics 17(4), 896–906 (2010)

    Article  Google Scholar 

  13. V.A. Coleman; C. Jagadish. Basic Properties and Applications of ZnO, ed. by C. Jagadish, S.J. Pearton. In Zinc Oxide Bulk, Thin Films and Nanostructures (Elsevier, Oxford, 2006)

    Google Scholar 

  14. J.W. Sun, Y.M. Lu, Y.C. Liu, D.Z. Shen, Z.Z. Zhang, B.H. Li, J.Y. Zhang, B. Yao, D.X. Zhao, X.W. Fan, J. Phys. D-Appl. Phys. 40(21), 6541–6544 (2007)

    Article  CAS  Google Scholar 

  15. C.H. Chia, T. Makino, K. Tamura, Y. Segawa, M. Kawasaki, A. Ohtomo, H. Koinuma, Appl. Phys. Lett. 82(12), 1848–1850 (2003)

    Article  CAS  Google Scholar 

  16. J. Davis, L. Van Dao, X. Wen, P. Hannaford, V. Coleman, H. Tan, C. Jagadish, K. Koike, S. Sasa, M. Inoue, M. Yano, Appl. Phys. Lett. 89(18), 182109 (2006)

    Article  Google Scholar 

  17. H.D. Sun, T. Makino, Y. Segawa, M. Kawasaki, A. Ohtomo, K. Tamura, H. Koinuma, Appl. Phys. Lett. 78(22), 3385–3387 (2001)

    Article  CAS  Google Scholar 

  18. D.C. Reynolds, D.C. Look, B. Jogai, C.W. Litton, G. Cantwell, W.C. Harsch, Phys. Rev. B 60(4) 2340 (1999)

    Google Scholar 

  19. Y.S. Park, C.W. Litton, T.C. Collins, D.C. Reynolds, Phys. Rev. 143(2), 512 (1966)

    Article  CAS  Google Scholar 

  20. B.K. Meyer, H. Alves, D.M. Hofmann, W. Kriegseis, D. Forster, F. Bertram, J. Christen, A. Hoffmann, M. Strassburg, M. Dworzak, U. Haboeck, A.V. Rodina, Phys. Status Solidi B Basic Res. 241(2), 231–260 (2004)

    Article  CAS  Google Scholar 

  21. B. Gil, P. Lefebvre, T. Bretagnon, T. Guillet, J.A. Sans, T. Taliercio, C. Morhain, Phys. Rev. B 74(15), 153302 (2006)

    Article  Google Scholar 

  22. M. Yano, K. Hashimoto, K. Fujimoto, K. Koike, S. Sasa, M. Inoue, Y. Uetsuji, T. Ohnishi, K. Inaba, J. Cryst. Growth 301, 353–357 (2007)

    Article  Google Scholar 

  23. M.W. Allen, P. Miller, R.J. Reeves, S.M. Durbin, Appl. Phys. Lett. 90(6), 062104 (2007)

    Article  Google Scholar 

  24. J. Davis, C. Jagadish, Laser Photon. Rev. 3(1–2), 85–96 (2009)

    Article  CAS  Google Scholar 

  25. C. Morhain, T. Bretagnon, P. Lefebvre, X. Tang, P. Valvin, T. Guillet, B. Gil, T. Taliercio, M. Teisseire-Doninelli, B. Vinter, C. Deparis, Phys. Rev. B 72(24), 241305 (2005)

    Article  Google Scholar 

  26. T. Bretagnon, P. Lefebvre, P. Valvin, B. Gil, C. Morhain, X.D. Tang, J. Cryst. Growth 287(1), 12–15 (2006)

    Article  CAS  Google Scholar 

  27. T. Bretagnon, P. Lefebvre, T. Guillet, T. Taliercio, B. Gil, C. Morhain, Appl. Phys. Lett. 90(20), 201912 (2007)

    Article  Google Scholar 

  28. J.M. Chauveau, D.A. Buell, M. Laugt, P. Vennegues, M. Teisseire-Doninelli, S. Berard-Bergery, C. Deparis, B. Lo, B. Vinter, C. Morhain, J. Cryst. Growth 301, 366–369 (2007)

    Article  Google Scholar 

  29. J. Davis, L. Dao, X. Wen, C. Ticknor, P. Hannaford, V. Coleman, H. Tan, C. Jagadish, K. Koike, S. Sasa, M. Inoue, M. Yano, Nanotechnology 19(5), 055205 (2008)

    Article  CAS  Google Scholar 

  30. T. Makino, K. Tamura, C.H. Chia, Y. Segawa, M. Kawasaki, A. Ohtomo, H. Koinuma, Appl. Phys. Lett. 81(13), 2355–2357 (2002)

    Article  CAS  Google Scholar 

  31. T. Makino, A. Ohtomo, C.H. Chia, Y. Segawa, H. Koinuma, M. Kawasaki, Phys. E Low-Dimensional Syst. Nanostruct. 21(2–4), 671–675 (2004)

    Article  CAS  Google Scholar 

  32. C.R. Hall, L. Dao, K. Koike, S. Sasa, H.H. Tan, M. Inoue, M. Yano, P. Hannaford, C. Jagadish, J.A. Davis, Phys. Rev. B 80(23), 235316 (2009)

    Article  Google Scholar 

  33. C.H. Chia, T. Makino, Y. Segawa, M. Kawasaki, A. Ohtomo, K. Tamura, H. Koinuma, J. Appl. Phys. 90(7), 3650–3652 (2001)

    CAS  Google Scholar 

  34. B.P. Zhang, N.T. Binh, K. Wakatsuki, C.Y. Liu, Y. Segawa, Appl. Phys. Lett. 86(3), 032105 (2005)

    Article  Google Scholar 

  35. Z.P. Wei, Y.M. Lu, D.Z. Shen, C.X. Wu, Z.Z. Zhang, D.X. Zhao, J.Y. Zhang, X.W. Fan, J. Lumin. 119, 551–555 (2006)

    Article  Google Scholar 

  36. T. Guillet, T. Bretagnon, T. Taliercio, P. Lefebvre, B. Gil, C. Morhain, X.D. Tang, Superlatt. Microstruct. 41(5–6), 352–359 (2007)

    Article  CAS  Google Scholar 

  37. B. Gil, Superlatt. Microstruct. 43(5–6), 408–416 (2008)

    Article  CAS  Google Scholar 

  38. T. Makino, N.T. Tuan, H.D. Sun, C.H. Chia, Y. Segawa, M. Kawasaki, A. Ohtomo, K. Tamura, T. Suemoto, H. Akiyama, M. Baba, S. Saito, T. Tomita, H. Koinuma, Appl. Phys. Lett. 78(14), 1979–1981 (2001)

    Article  CAS  Google Scholar 

  39. T. Makino, Y. Segawa, M. Kawasaki, H. Koinuma, Semicond. Sci. Technol. 20(4), S78–S91 (2005)

    Article  CAS  Google Scholar 

  40. X. Wen, J. Davis, L. Van Dao, P. Hannaford, V. Coleman, H. Tan, C. Jagadish, K. Koike, S. Sasa, M. Inoue, M. Yano, Appl. Phys. Lett. 90(22), 221914 (2007)

    Article  Google Scholar 

  41. X. Wen, J. Davis, D. McDonald, L. Dao, P. Hannaford, V. Coleman, H. Tan, C. Jagadish, K. Koike, S. Sasa, M. Inoue, M. Yano, Nanotechnology 18(31), 315403 (2007)

    Article  Google Scholar 

  42. A.Y. Polyakov, N.B. Smirnov, A.V. Govorkov, E.A. Kozhukhova, A.I. Belogorokhov, D.P. Norton, H.S. Kim, S.J. Pearton, J. Electron. Mater. 39(5), 601–607 (2010)

    CAS  Google Scholar 

  43. G. Coli, K.K. Bajaj. Appl.Phys. Lett. 78(19), 2861–2863 (2001)

    Article  CAS  Google Scholar 

  44. C. Klingshirn, R. Hauschild, J. Fallert, H. Kalt, Phys. Rev. B 75(11), 115203 (2007)

    Article  Google Scholar 

  45. T. Makino, K. Tamura, C.H. Chia, Y. Segawa, M. Kawasaki, A. Ohtomo, H. Koinuma, Phys. Rev. B 66(23), 233305 (2002)

    Article  Google Scholar 

  46. T. Makino, Y. Segawa, M. Kawasaki, J. Appl. Phys. 97(10), (2005)

    Google Scholar 

  47. J.W. Sun, B.P. Zhang, Nanotechnology 19(48), 485401 (2008)

    Article  CAS  Google Scholar 

  48. C. Klingshirn, Phys. Status Solidi B Basic Solid State Phys. 244(9), 3027–3073 (2007)

    Article  CAS  Google Scholar 

  49. J.M. Chauveau, J. Vives, J. Zuniga-Perez, M. Laugt, M. Teisseire, C. Deparis, C. Morhain, B. Vinter, Appl. Phys. Lett. 93(23), 231911 (2008)

    Article  Google Scholar 

  50. J. Zuniga-Perez, V. Munoz-Sanjose, E. Palacios-Lidon, J. Colchero, Phys. Rev. Lett. 95(22), 226105 (2005)

    Article  Google Scholar 

  51. P. Waltereit, O. Brandt, A. Trampert, H.T. Grahn, J. Menniger, M. Ramsteiner, M. Reiche, K.H. Ploog, Nature 406(6798), 865–868 (2000)

    Article  CAS  Google Scholar 

  52. S. Lautenschlaeger, S. Eisermann, M.N. Hofmann, U. Roemer, M. Pinnisch, A. Laufer, B.K. Meyer, H. von Wenckstern, A. Lajn, F. Schmidt, M. Grundmann, J. Blaesing, A. Krost, J. Cryst. Growth 312(14), 2078–2082 (2010)

    Article  CAS  Google Scholar 

  53. J.M. Chauveau, C. Morhain, M. Teisseire, M. Laugt, C. Deparis, J. Zuniga-Perez, B. Vinter, Microelectron. J. 40(3), 512–516 (2009)

    Article  CAS  Google Scholar 

  54. H. Matsui, H. Tabata, Appl. Phys. Lett. 94(16), 161907 (2009)

    Article  Google Scholar 

  55. J.M. Chauveau, B. Vinter, M. Laugt, M. Teisseire, P. Vennegues, C. Deparis, J. Zuniga-Perez, C. Morhain, J. Korean Phys. Soc. 53(5), 2934–2938 (2008)

    CAS  Google Scholar 

  56. J.M. Chauveau, M. Laugt, P. Vennegues, M. Teisseire, B. Lo, C. Deparis, C. Morhain, B. Vinter, Semicond. Sci. Technol. 23(3), 035005 (2008)

    Article  Google Scholar 

  57. V.A. Coleman, M. Buda, H.H. Tan, C. Jagadish, M.R. Phillips, K. Koike, S. Sasa, M. Inoue, M. Yano, Semicond. Sci. Technol. 21(3), L25–L28 (2006)

    Article  CAS  Google Scholar 

  58. C.R. Hall, L.V. Dao, K. Koike, S. Sasa, H.H. Tan, M. Inoue, M. Yano, C. Jagadish, J.A. Davis, Appl. Phys. Lett. 96(19), 193117 (2010)

    Article  Google Scholar 

  59. L. Wang, R. Li, Z. Yang, D. Li, T. Yu, N. Liu, L. Liu, W. Chen, X. Hu, Appl. Phys. Lett. 95(21), 211104 (2009)

    Article  Google Scholar 

  60. H.P. Zhao, G.Y. Liu, X.H. Li, R.A. Arif, G.S. Huang, J.D. Poplawsky, S. Tafon Penn, V. Dierolf, N. Tansu. IET Optoelectron. 3(6), 283–295 (2009)

    Article  CAS  Google Scholar 

  61. M. Yano, K. Ogata, F.P. Yan, K. Koike, S. Sasa, M. Inoue, Mat. Res. Soc. Symp. Proc. 744, M3.1.1.(2003)

    Google Scholar 

  62. M. Brandt, M. Lange, M. Stolzel, A. Muller, G. Benndorf, J. Zippel, J. Lenzner, M. Lorenz, M. Grundmann, Appl. Phys. Lett. 97(5), 052101–052103 (2010)

    Article  Google Scholar 

  63. J. Zippel, S. Heitsch, M. Stolzel, A. Muller, H. von Wenckstern, G. Benndorf, M. Lorenz, H. Hochmuth, M. Grundmann, J. Lumin. 130(3), 520–526 (2010)

    Article  CAS  Google Scholar 

  64. W.E. Bowen, W. Wang, E. Cagin, J.D. Phillips, J. Electron. Mater. 37(5), 749–754 (2008)

    CAS  Google Scholar 

  65. P. Misra, T.K. Sharma, S. Porwal, L.M. Kukreja. Appl. Phys. Lett. 89(16), 161912–161913 (2006)

    Article  Google Scholar 

  66. A. Malashevich, D. Vanderbilt, Phys. Rev. B. 75(4), 045106 (2007)

    Article  Google Scholar 

  67. J. Zippel, J. Lenzner, G. Benndorf, M. Lange, H. Hochmuth, M. Lorenz, M. Grundmann, J. Vac. Sci. Technol. B 27(3), 1735–1740 (2009)

    Article  CAS  Google Scholar 

  68. J. Zippel, M. Stolzel, A. Muller, G. Benndorf, M. Lorenz, H. Hochmuth, M. Grundmann, Phys. Status Solidi B Basic Solid State Phys. 247(2), 398–404 (2010)

    Article  CAS  Google Scholar 

  69. S. Su, Y. Lu, G. Xing, T. Wu, Superlatt. Microstruct. 48(5), 485–490 (2010)

    Article  CAS  Google Scholar 

  70. S.H. Tsang, S.F. Yu, H.Y. Yang, H.K. Liang, X.F. Li, IEEE Photon. Technol. Lett. 21(21), 1624–1626 (2009)

    Article  CAS  Google Scholar 

  71. G. Shukla, J. Phys. D-Appl. Phys. 42(7), 075105 (2009)

    Article  Google Scholar 

  72. S. Chu, M. Olmedo, Z. Yang, J.Y. Kong, J.L. Liu, Appl. Phys. Lett. 93(18), 181106 (2008)

    Article  Google Scholar 

  73. J. Cui, S. Sadofev, S. Blumstengel, J. Puls, F. Henneberger, Appl. Phys. Lett. 89(5), 051108 (2006)

    Article  Google Scholar 

  74. T. Gruber, C. Kirchner, R. Kling, F. Reuss, A. Waag, Appl. Phys. Lett. 84(26), 5359–5361 (2004)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chennupati Jagadish .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Davis, J., Jagadish, C. (2012). ZnO/MgZnO Quantum Wells. In: Pearton, S. (eds) GaN and ZnO-based Materials and Devices. Springer Series in Materials Science, vol 156. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23521-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-23521-4_14

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-23520-7

  • Online ISBN: 978-3-642-23521-4

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics