Skip to main content

Recent Advances in GaN Nanowires: Surface-Controlled Conduction and Sensing Applications

  • Chapter
  • First Online:
GaN and ZnO-based Materials and Devices

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 156))

Abstract

Recent studies reveal an interesting surface-controlled conduction in the wide-bandgap single-crystalline GaN nanowires (NWs). The surface depletion and built-in electric field inherent to the NWs have led to the high-gain (long-lifetime) photoconduction and size-dependent transport properties. Efficient and selective sensing for ultraviolet light, gaseous and biological molecules based on the novel surface nature of nanostructure is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S. Nakamura, S. Pearton, G. Fasol, The Blue Laser Diode: The Complete Story. (Springer, Berlin 2000)

    Google Scholar 

  2. H. Morkoc, Nitride Semiconductors and Devices. (Springer, Berlin 1999)

    Google Scholar 

  3. L.C. Chen, K.H. Chen, C.C. Chen, Group III- and Group IV Nitride Nanorods and Nanowires, Ch. 9. In: Z.L. Wang (ed.) Nanowires and Nanobelts: Materials, Properties and Devices, Vol. 1. (Kluwer Academic Publisher, Boston 2003)

    Google Scholar 

  4. S. Chattopadhyay, A. Ganguly, K.H. Chen, L.C. Chen, One-dimensional group III-nitrides: growth, properties, and applications in nanosensing and nano-optoelectronics. Crit. Rev. Solid State Mater. Sci. 34, 224–279 (2009)

    Article  CAS  Google Scholar 

  5. Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, H. Yan, One-dimensional nanostructures: synthesis, characterization, and applications. Adv. Mater. 15, 353–389 (2003)

    Article  CAS  Google Scholar 

  6. L. Samuelson, Self-forming nanoscale devices. Mater. Today 6, 22–31 (2003)

    CAS  Google Scholar 

  7. Z.L. Wang, Nanostructures of zinc oxide. Mater. Today 7, 26–33 (2004)

    CAS  Google Scholar 

  8. G. Cheng, A. Kolmakov, Y. Zhang, M. Moskovits, R. Munden, M.A. Reed, G. Wang, D. Moses, J. Zhang, Current rectification in a single GaN nanowire with a well-defined p–n junction. Appl. Phys. Lett. 83, 1578 (2003)

    Article  CAS  Google Scholar 

  9. S.Y. Lee, T.H. Kim, D.I. Suh, E.K. Suh, N.K. Cho, W.K. Seong, S.K. Lee, Dielectrophoretically aligned GaN nanowire rectifiers. Appl. Phys. A 87, 739–742 (2007)

    Article  CAS  Google Scholar 

  10. Y. Li, J. Xiang, F. Qian, S. Gradecak, Y. Wu, H. Yan, D.A. Blom, C.M. Lieber, Dopant-free GaN/AlN/AlGaN radial nanowire heterostructures as high electron mobility transistors. Nano Lett. 6, 1468–1473 (2006)

    Article  CAS  Google Scholar 

  11. H.M. Kim, Y.H. Cho, H. Lee, S.I. Kim, S.R. Ryu, D.Y. Kim, T.W. Kang, K.S. Chung, High-brightness light emitting diodes using dislocation-free indium gallium nitride/gallium nitride multiquantum-well nanorod arrays. Nano Lett. 4, 1059–1062 (2004)

    Article  CAS  Google Scholar 

  12. F. Qian, S. Gradecak, Y. Li, C.Y. Wen, C.M. Lieber, Core/multishell nanowire heterostructures as multicolor, high-efficiency light-emitting diodes. Nano Lett. 5, 2287–2291 (2005)

    Article  CAS  Google Scholar 

  13. F. Qian, Y. Li, S. Gradecak, H.G. Park, Y. Dong, Y. Ding, Z.L. Wang, C.M. Lieber, Multi-quantum-well nanowire heterostructures for wavelength-controlled lasers. Nat. Mater. 7, 701–706 (2008)

    Article  CAS  Google Scholar 

  14. S. Han, W. Jin, D. Zhang, T. Tang, C. Li, X. Liu, Z. Liu, B. Lei, C. Zhou, Photoconduction studies on GaN nanowire transistors under UV and polarized UV illumination. Chem. Phys. Lett. 389, 176–180 (2004)

    Article  CAS  Google Scholar 

  15. M.S. Son, S.I. Im, Y.S. Park, C.M. Park, T.W. Kang, K.H. Yoo, Ultraviolet photodetector based on single GaN nanorod p–n junctions. Mater. Sci. Eng. C 26, 886–888 (2006)

    Article  CAS  Google Scholar 

  16. R.S. Chen, S.W. Wang, Z.H. Lan, J.T.H. Tsai, C.T. Wu, L.C. Chen, K.H. Chen, Y.S. Huang, C.C. Chen, On-chip fabrication of well-aligned and contact-barrier-free GaN nanobridge devices with ultrahigh photocurrent responsivity. Small 4, 925–929 (2008)

    Article  CAS  Google Scholar 

  17. C.P. Chen, A. Ganguly, C.H. Wang, C.W. Hsu, S. Chattopadhyay, Y.K. Hsu, Y.C. Chang, K.H. Chen, L.C. Chen, Label-free dual sensing of DNA molecules using GaN nanowires. Anal. Chem. 81, 36–42 (2009)

    Article  CAS  Google Scholar 

  18. A. Ganguly, C.P. Chen, Y.T. Lai, C.C. Kuo, C.W. Hsu, K.H. Chen, L.C. Chen, Functionalized GaN nanowire-based electrode for direct label-free voltammetric detection of DNA hybridization. J. Mater. Chem. 19, 928–933 (2009)

    Article  CAS  Google Scholar 

  19. Y. Dong, B. Tian, T.J. Kempa, C.M. Lieber, Coaxial group III-nitride nanowire photovoltaics. Nano Lett. 9, 2183–2187 (2009)

    Article  CAS  Google Scholar 

  20. A. Motayed, M. Vaudin, A.V. Davydov, J. Melngailis, M. He, S.N. Mohammad, Diameter dependent transport properties of gallium nitride nanowire field effect transistors. Appl. Phys. Lett. 90, 043104 (2007)

    Article  Google Scholar 

  21. M. Niebelschütz, V. Cimalla, O. Ambacher, T. Machleidt, J. Ristic, E. Calleja, Electrical performance of gallium nitride nanocolumns. Physica E 37, 200–203 (2007)

    Article  Google Scholar 

  22. B.S. Simpkins, M.A. Mastro, C.R. Eddy, P.E. Pehrsson, Surface depletion effects in semiconducting nanowires. J. Appl. Phys. 103, 104313 (2008)

    Article  Google Scholar 

  23. J. Yoon, A.M. Girgis, I. Shalish, L.R. Ram-Mohan, V. Narayanamurti, Size-dependent impurity activation energy in GaN nanowires. Appl. Phys. Lett. 94, 142102 (2009)

    Article  Google Scholar 

  24. L. Polenta, M. Rossi, A. Cavallini, R. Calarco, M. Marso, R. Meijers, T. Richter, T. Stoica, H. Lüth, Investigation on localized states in GaN nanowires. ACS Nano 2, 287–292 (2008)

    Article  CAS  Google Scholar 

  25. H.Y. Chen, R.S. Chen, F.C. Chang, L.C. Chen, K.H. Chen, Y.J. Yang, Size-dependent photoconductivity and dark conductivity of m-axial GaN nanowires with small critical diameter. Appl. Phys. Lett. 95, 143123 (2009)

    Article  Google Scholar 

  26. R. Calarco, M. Marso, T. Richter, A.I. Aykanat, R. Meijers, A.v.d. Hart, T. Stoica, H. Lüth, Size-dependent Photoconductivity in MBE-Grown GaN-Nanowires. Nano Lett. 5, 981–984 (2005)

    Google Scholar 

  27. A. Cavallini, L. Polenta, M. Rossi, T. Stoica, R. Calarco, R.J. Meijers, T. Richter, H. Lüth: Franz-Keldysh Effect in GaN Nanowires. Nano Lett. 7, 2166–2170 (2007)

    Article  CAS  Google Scholar 

  28. R.S. Chen, H.Y. Chen, C.Y. Lu, K.H. Chen, C.P. Chen, L.C. Chen, Y.J. Yang, Ultrahigh photocurrent gain in m-axial GaN nanowires. Appl. Phys. Lett. 91, 223106 (2007)

    Article  Google Scholar 

  29. R.S. Chen, C.Y. Lu, K.H. Chen, L.C. Chen, Molecule-modulated photoconductivity and gain-amplified selective gas sensing in polar GaN nanowires. Appl. Phys. Lett. 95, 233119 (2009)

    Article  Google Scholar 

  30. M. Asif Khan, J.N. Kuznia, D.T. Olson, J.M. Van Hove, M. Blasingame, L.F. Reitz, High-responsivity photoconductive ultraviolet sensors based on insulating single-crystal GaN epilayers. Appl. Phys. Lett. 60, 2917 (1992)

    Article  Google Scholar 

  31. D. Walker, X. Zhang, P. Kung, A. Saxler, S. Javadpour, J. Xu,, M. Razeghi, AlGaN ultraviolet photoconductors grown on sapphire. Appl. Phys. Lett. 68, 2100 (1996)

    Article  CAS  Google Scholar 

  32. B.W. Lim, Q.C. Chen, J.Y. Yang, M. Asif Khan, High responsitivity intrinsic photoconductors based on AlxGa1 − xN. Appl. Phys. Lett. 68, 3761 (1996)

    Article  CAS  Google Scholar 

  33. B. Shen, K. Yang, L. Zang, Z.Z. Chen, Y.G. Zhou, P. Chen, R. Zhang, Z.C. Huang, H.S. Zhou, Y.D. Zheng, Study of photocurrent properties of GaN ultraviolet photoconductor grown on 6H-SiC substrate. Jpn. J. Appl. Phys. 38, 767–769 (1999)

    Article  CAS  Google Scholar 

  34. C. Pernot, A. Hirano, M. Iwaya, T. Detchprohm, H. Amano, I. Akasaki, Low-intensity ultraviolet photodetectors based on AlGaN. Jpn. J. Appl. Phys. 38, L487–L489 (1999)

    Article  CAS  Google Scholar 

  35. P. Bhattacharya, Semiconductor optoelectronic devices, Ch. 8, pp. 346–347. (Prentice-Hall Inc., New Jersey 1997)

    Google Scholar 

  36. Z.M. Zhao, R.L. Jiang, P. Chen, D.J. Xi, Z.Y. Luo, R. Zhang, B. Shen, Z.Z. Chen, Y.D. Zheng, Metal–semiconductor–metal GaN ultraviolet photodetectors on Si(111). Appl. Phys. Lett. 77, 444 (2000)

    Article  CAS  Google Scholar 

  37. Z.C. Huang, D.B. Mott, P.K. Shu, R. Zhang, J.C. Chen, D.K. Wickenden, Optical quenching of photoconductivity in GaN photoconductors. J. Appl. Phys. 82, 2707 (1997)

    Article  CAS  Google Scholar 

  38. E. Munoz, E. Monroy, J.A. Garrido, I. Izpura, F.J. Sánchez, M.A. Sánchez-Garcia, E. Calleja, B. Beaumont, P. Gibart, Photoconductor gain mechanisms in GaN ultraviolet detectors. Appl. Phys. Lett. 71, 870 (1997)

    Article  CAS  Google Scholar 

  39. F. Binet, J.Y. Duboz, E. Rosencher, F. Scholz, V. Härle, Mechanisms of recombination in GaN photodetectors. Appl. Phys. Lett. 69, 1202 (1996)

    Article  Google Scholar 

  40. M. Razeghi, A. Rogalski, Semiconductor ultraviolet detectors. J. Appl. Phys. 79, 7433 (1996)

    CAS  Google Scholar 

  41. T. Kawashima, H. Yoshikawa, S. Adachi, S. Fuke, K. Ohtsuka, Optical properties of hexagonal GaN. J. Appl. Phys. 82, 3528 (1997)

    Article  CAS  Google Scholar 

  42. J.F. Muth, J.H. Lee, I.K. Shmagin, R.M. Kolbas, H.C. Casey, B.P. Keller, U.K. Mishra, S.P. DenBaars, Absorption coefficient, energy gap, exciton binding energy, and recombination lifetime of GaN obtained from transmission measurements. Appl. Phys. Lett. 71, 2572 (1997)

    Article  CAS  Google Scholar 

  43. C.Y. Chang, G.C. Chi, W.M. Wang, L.C. Chen, K.H. Chen, F. Ren, S.J. Pearton, Electrical transport properties of single GaN and InN nanowires. J. Electro. Mater. 35, 738–743 (2006)

    Article  CAS  Google Scholar 

  44. T. Kuykendall, P. Pauzauskie, S. Lee, Y. Zhang, J. Goldberger, P. Yang: Metalorganic chemical vapor deposition route to GaN nanowires with triangular cross sections. Nano Lett. 3, 1063–1066 (2003)

    Article  CAS  Google Scholar 

  45. E. Stern, G. Cheng, E. Cimpoiasu, R. Klie, S. Guthrie, J. Klemic, I. Kretzschmar, E. Steinlauf, D. Turner-Evans, E. Broomfield, J. Hyland, R. Koudelka, T. Boone, M. Young, A. Sanders, R. Munden, T. Lee, D. Routenberg, M.A. Reed, Electrical characterization of single GaN nanowires. Nanotechnology 16, 2941–2953 (2005)

    Article  CAS  Google Scholar 

  46. Y. Huang, X. Duan, Y. Cui, C.M. Lieber, Gallium nitride nanowire nanodevices. Nano Lett. 2, 101–104 (2002)

    CAS  Google Scholar 

  47. K.S. Stevens, M. Kinniburgh, R. Beresford, Photoconductive ultraviolet sensor using Mg-doped GaN on Si(111). Appl. Phys. Lett. 66, 3518 (1995)

    Article  CAS  Google Scholar 

  48. R.H. Bube, Photoelectronic Properties of Semiconductors. (Cambridge, New York 1992)

    Google Scholar 

  49. J.A. Garrido, E. Monroy, I. Izpura, E. Munoz, Photoconductive gain modelling of GaN photodetectors. Semicond. Sci. Technol. 13, 563–568 (1998)

    Article  CAS  Google Scholar 

  50. C. Soci, A. Zhang, B. Xiang, S.A. Dayeh, D.P.R. Aplin, J. Park, X.Y. Bao, Y.H. Lo, D. Wang, ZnO nanowire UV photodetectors with high internal gain. Nano Lett. 7, 1003–1009 (2007)

    Article  CAS  Google Scholar 

  51. T.K. Zywietz, J. Neugebauer, M. Scheffler, The adsorption of oxygen at GaN surfaces. Appl. Phys. Lett. 74, 1695 (1999)

    Article  CAS  Google Scholar 

  52. M. Sumiya, K. Yoshimura, K. Ohtsuka, S. Fuke, Dependence of impurity incorporation on the polar direction of GaN film growth. Appl. Phys. Lett. 76, 2098 (2000)

    Article  CAS  Google Scholar 

  53. T.Y. Lin, H.C. Yang, Y.F. Chen, Optical quenching of the photoconductivity in n-type GaN. J. Appl. Phys. 87, 3404 (2000)

    Article  CAS  Google Scholar 

  54. C.H. Qiu, J.I. Pankove, Deep levels and persistent photoconductivity in GaN thin films. Appl. Phys. Lett. 70, 1983 (1997)

    Article  CAS  Google Scholar 

  55. Y.T. Lai, A. Ganguly, K.H. Chen, L.C. Chen, Direct voltammetric sensing of l-cysteine at pristine GaN nanowires electrode. Biosens. Bioelectron. 26, 1688–1691 (2010)

    Article  CAS  Google Scholar 

  56. C.W. Hsu, A. Ganguly, C.P. Chen, C.C. Kuo, P.P. Paskov, P.O. Holtz, L.C. Chen, K.H. Chen, Optical properties of functionalized GaN nanowires. J. Appl. Phys. 109, 053523 (2011)

    Article  Google Scholar 

  57. C.P. Chen, A. Ganguly, C.Y. Lu, T.Y. Chen, C.C. Kuo, W.H. Tu, R.S. Chen, W.B. Fischer, K.H. Chen, L.C. Chen, Ultrasensitive in situ label-free DNA detection using a GaN nanowire-based extended-gate field-effect-transistor sensor. Anal. Chem. 83, 1938–1943 (2011)

    Article  CAS  Google Scholar 

  58. M. Stutzmann, J.A. Garrido, M. Eickhoff, M.S. Brandt, Direct biofunctionalization of semiconductors: A survey. Phys. Stat. Sol. A 203, 3424–3437 (2006)

    Article  CAS  Google Scholar 

  59. G. Steinhoff, O. Purrucker, M. Tanaka, M. Stutzmann, M. Eickhoff, \({\mathrm{Al}}_{\mathrm{x}}{\mathrm{Ga}}_{1-\mathrm{x}}\mathrm{N}\mbox{ \textendash }\mathrm{a}\) new material system for biosensors. Adv. Funct. Mater. 13, 841–846 (2003)

    Article  CAS  Google Scholar 

  60. T.H. Young, C.R. Chen, Assessment of GaN chips for culturing cerebellar granule neurons. Biomaterials 27, 3361–3367 (2006)

    Article  CAS  Google Scholar 

  61. N. Chaniotakis, N. Sofikiti, Novel semiconductor materials for the development of chemical sensors and biosensors: A review. Anal. Chim. Acta 615, 1–9 (2008)

    Article  CAS  Google Scholar 

  62. S.J. Pearton, D.P. Norton, F. Ren, The promise and perils of wide-bandgap semiconductor nanowires for sensing, electronic, and photonic applications. Small 3, 1144–1150 (2007)

    Article  CAS  Google Scholar 

  63. B.S. Simpkins, K.M. McCoy, L.J. Whitman, P.E. Pehrsson, Fabrication and characterization of DNA-functionalized GaN nanowires. Nanotechnology 18, 355301 (2007)

    Article  Google Scholar 

  64. D.J. Guo, A.I. Abdulagatov, D.M. Rourke, K.A. Bertness, S.M. George, Y.C. Lee, W. Tan, GaN nanowire functionalized with atomic layer deposition techniques for enhanced immobilization of biomolecules. Langmuir 26, 18382–18391 (2010)

    Article  CAS  Google Scholar 

  65. W.C. Poh, K.P. Loh, W.D. Zhang, S. Triparthy, J.S. Ye, F.S. Sheu, Biosensing properties of diamond and carbon nanotubes. Langmuir 20, 5484–5492 (2004)

    Article  CAS  Google Scholar 

  66. E. Katz, I. Willner, Probing biomolecular interactions at conductive and semiconductive surfaces by impedance spectroscopy: routes to impedimetric immunosensors, DNA-sensors, and enzyme biosensors. Electroanalysis 15, 913–947 (2003)

    Article  CAS  Google Scholar 

  67. J.Y. Park, S.M. Park, DNA hybridization sensors based on electrochemical impedance spectroscopy as a detection tool. Sensors 9, 9513–9532 (2009)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Li-Chyong Chen or Kuei-Hsien Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Chen, RS., Ganguly, A., Chen, LC., Chen, KH. (2012). Recent Advances in GaN Nanowires: Surface-Controlled Conduction and Sensing Applications. In: Pearton, S. (eds) GaN and ZnO-based Materials and Devices. Springer Series in Materials Science, vol 156. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23521-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-23521-4_10

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-23520-7

  • Online ISBN: 978-3-642-23521-4

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics